25 research outputs found

    Biaxial Properties of the Left and Right Pulmonary Arteries in a Monocrotaline Rat Animal Model of Pulmonary Arterial Hypertension

    Get PDF
    In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress-strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH

    Quantification of uncertainty in a new network model of pulmonary arterial adventitial fibroblast pro-fibrotic signalling

    No full text
    Here, we present a novel network model of the pulmonary arterial adventitial fibroblast (PAAF) that represents seven signalling pathways, confirmed to be important in pulmonary arterial fibrosis, as 92 reactions and 64 state variables. Without optimizing parameters, the model correctly predicted 80% of 39 results of input-output and inhibition experiments reported in 20 independent papers not used to formulate the original network. Parameter uncertainty quantification (UQ) showed that this measure of model accuracy is robust to changes in input weights and half-maximal activation levels (EC50), but is more affected by uncertainty in the Hill coefficient (n), which governs the biochemical cooperativity or steepness of the sigmoidal activation function of each state variable. Epistemic uncertainty in model structure, due to the reliance of some network components and interactions on experiments using non-PAAF cell types, suggested that this source of uncertainty had a smaller impact on model accuracy than the alternative of reducing the network to only those interactions reported in PAAFs. UQ highlighted model parameters that can be optimized to improve prediction accuracy and network modules where there is the greatest need for new experiments. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'

    Substrate Stiffness and Stretch Regulate Profibrotic Mechanosignaling in Pulmonary Arterial Adventitial Fibroblasts

    No full text
    Pulmonary arterial adventitial fibroblasts (PAAFs) are important regulators of fibrotic vascular remodeling during the progression of pulmonary arterial hypertension (PAH), a disease that currently has no effective anti-fibrotic treatments. We conducted in-vitro experiments in PAAFs cultured on hydrogels attached to custom-made equibiaxial stretchers at 10% stretch and substrate stiffnesses representing the mechanical conditions of mild and severe stages of PAH. The expression of collagens α(1)I and α(1)III and elastin messenger RNAs (Col1a1, Col3a1, Eln) were upregulated by increased stretch and substrate stiffness, while lysyl oxidase-like 1 and α-smooth muscle actin messenger RNAs (Loxl1, Acta2) were only significantly upregulated when the cells were grown on matrices with an elevated stiffness representative of mild PAH but not on a stiffness representative of severe PAH. Fibronectin messenger RNA (Fn1) levels were significantly induced by increased substrate stiffness and transiently upregulated by stretch at 4 h, but was not significantly altered by stretch at 24 h. We modified our published computational network model of the signaling pathways that regulate profibrotic gene expression in PAAFs to allow for differential regulation of mechanically-sensitive nodes by stretch and stiffness. When the model was modified so that stiffness activated integrin β3, the Macrophage Stimulating 1 or 2 (MST12) kinases, angiotensin II (Ang II), transforming growth factor-β (TGF-β), and syndecan-4, and stretch-regulated integrin β3, MST12, Ang II, and the transient receptor potential (TRP) channel, the model correctly predicted the upregulation of all six genes by increased stiffness and the observed responses to stretch in five out of six genes, although it could not replicate the non-monotonic effects of stiffness on Loxl1 and Acta2 expression. Blocking Ang II Receptor Type 1 (AT1R) with losartan in-vitro uncovered an interaction between the effects of stretch and stiffness and angiotensin-independent activation of Fn1 expression by stretch in PAAFs grown on 3-kPa matrices. This novel combination of in-vitro and in-silico models of PAAF profibrotic cell signaling in response to altered mechanical conditions may help identify regulators of vascular adventitial remodeling due to changes in stretch and matrix stiffness that occur during the progression of PAH in-vivo

    Computational models of ventricular mechanics and adaptation in response to right-ventricular pressure overload.

    No full text
    Pulmonary arterial hypertension (PAH) is associated with substantial remodeling of the right ventricle (RV), which may at first be compensatory but at a later stage becomes detrimental to RV function and patient survival. Unlike the left ventricle (LV), the RV remains understudied, and with its thin-walled crescent shape, it is often modeled simply as an appendage of the LV. Furthermore, PAH diagnosis is challenging because it often leaves the LV and systemic circulation largely unaffected. Several treatment strategies such as atrial septostomy, right ventricular assist devices (RVADs) or RV resynchronization therapy have been shown to improve RV function and the quality of life in patients with PAH. However, evidence of their long-term efficacy is limited and lung transplantation is still the most effective and curative treatment option. As such, the clinical need for improved diagnosis and treatment of PAH drives a strong need for increased understanding of drivers and mechanisms of RV growth and remodeling (G&R), and more generally for targeted research into RV mechanics pathology. Computational models stand out as a valuable supplement to experimental research, offering detailed analysis of the drivers and consequences of G&R, as well as a virtual test bench for exploring and refining hypotheses of growth mechanisms. In this review we summarize the current efforts towards understanding RV G&R processes using computational approaches such as reduced-order models, three dimensional (3D) finite element (FE) models, and G&R models. In addition to an overview of the relevant literature of RV computational models, we discuss how the models have contributed to increased scientific understanding and to potential clinical treatment of PAH patients
    corecore