4,764 research outputs found

    Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte

    Get PDF
    The complex spatial and paracrine relationships between the various liver histotypes are essential for proper functioning of the hepatic parenchymal cells. Only within a correct tissue organization, in fact, they stably maintain their identity and differentiated phenotype. The loss of histotype identity, which invariably occurs in the primary hepatocytes in culture, or in vivo in particular pathological conditions (fibrosis and tumors), is mainly due to the phenomenon of epithelial-to-mesenchymal transition (EMT). The EMT process, that occurs in the many epithelial cells, appears to be driven by a number of general, non- tissue-specific, master transcriptional regulators. The reverse process, the mesenchymal-to epithelial transition (MET), as yet much less characterized at a molecular level, restores specific epithelial identities, and thus, must include tissue-specific master elements. In this review, we will summarize the so far unveiled events of EMT/MET occurring in liver cells. In particular, we will focus on hepatocyte and describe the pivotal role in the control of EMT/MET dynamics exerted by a tissue-specific molecular mini-circuitry. Recent evidence, indeed, highlighted as two transcriptional factors, the master gene of EMT Snail, and the master gene of hepatocyte differentiation HNF4α, exhorting a direct reciprocal repression, act as pivotal elements in determining opposite cellular outcomes. The different balances between these two master regulators, further integrated by specific microRNAs, in fact, were found responsible for the EMT/METs dynamics as well as for the preservation of both hepatocyte and stem/precursor cells identity and differentiation. Overall these findings impact the maintenance of stem cells and differentiated cells both in in vivo EMT/MET physio-pathological processes as well as in culture.The complex spatial and paracrine relationships between the various liver histotypes are essential for proper functioning of the hepatic parenchymal cells. Only within a correct tissue organization, in fact, they stably maintain their identity and differentiated phenotype. The loss of histotype identity, which invariably occurs in the primary hepatocytes in culture, or in vivo in particular pathological conditions (fibrosis and tumors), is mainly due to the phenomenon of epithelial-to-mesenchymal transition (EMT). The EMT process, that occurs in the many epithelial cells, appears to be driven by a number of general, non- tissue-specific, master transcriptional regulators. The reverse process, the mesenchymal-to epithelial transition (MET), as yet much less characterized at a molecular level, restores specific epithelial identities, and thus, must include tissue-specific master elements. In this review, we will summarize the so far unveiled events of EMT/MET occurring in liver cells. I

    Alien molluscan species established along the Italian shores: An update, with discussions on some Mediterranean "alien species" categories

    Get PDF
    The state of knowledge of the alien marine Mollusca in Italy is reviewed and updated. Littorina saxatilis (Olivi, 1792), Polycera hedgpethi Er. Marcus, 1964 and Haminoea japonica Pilsbry, 1895 are here considered as established on the basis of published and unpublished data, and recent records of the latter considerably expand its known Mediterranean range to the Tyrrhenian Sea. COI sequences obtained indicate that a comprehensive survey of additional European localities is needed to elucidate the dispersal pathways of H. japonica. Recent records and interpretation of several molluscan taxa as alien are discussed both in light of new Mediterranean (published and unpublished) records and of four categories previously excluded from alien species lists. Within this framework, ten taxa are no longer considered as alien species, or their records from Italy are refuted. Furthermore, Trochocochlea castriotae Bellini, 1903 is considered a new synonym for Gibbula albida (Gmelin, 1791). Data provided here leave unchanged as 35 the number of alien molluscan taxa recorded from Italy as well as the percentage of the most plausible vectors of introduction, but raise to 22 the number of established species along the Italian shores during the 2005-2010 period, and backdate to 1792 the first introduction of an alien molluscan species (L. saxatilis) to the Italian shores

    A Preliminary Discussion of the Kinematics of BHB and RR Lyrae Stars near the North Galactic Pole

    Get PDF
    The radial velocity dispersion of 67 RR Lyrae variable and blue horizontal branch (BHB) stars that are more than 4 kpc above the galactic plane at the North Galactic Pole is 110 km/sec and shows no trend with Z (the height above the galactic plane). Nine stars with Z < 4 kpc show a smaller velocity dispersion (40 +/-9 km/sec) as is to be expected if they mostly belong to a population with a flatter distribution. Both RR Lyrae stars and BHB stars show evidence of stream motion; the most significant is in fields RR2 and RR3 where 24 stars in the range 4.0 < Z < 11.0 kpc have a mean radial velocity of -59 +/- 16 km/sec. Three halo stars in field RR 2 appear to be part of a moving group with a common radial velocity of -90 km/sec. The streaming phenomenon therefore occurs over a range of spatial scales. The BHB and RR Lyrae stars in our sample both have a similar range of metallicity (-1.2 < [Fe/H] < -2.2). Proper motions of BHB stars in fields SA 57 (NGP) and the Anticenter field (RR 7) (both of which lie close to the meridional plane of the Galaxy) show that the stars that have Z 4 kpc have a Galactic V motion that is < -200 km/sec and which is characteristic of the halo. Thus the stars that have a flatter distribution are really halo stars and not members of the metal-weak thick-disk.Comment: Accepted for publication in the March 1996 AJ. 15 pages, AASTeX V4.0 latex format (including figures), 2 eps figures, 2 separate AASTeX V4.0 latex table

    Current Review of In Nivo GBM Rodent Models: Emphasis on the CNS-1 Tumour Model

    Get PDF
    GBM (glioblastoma multiforme) is a highly aggressive brain tumour with very poor prognosis despite multi-modalities of treatment. Furthermore, recent failure of targeted therapy for these tumours highlights the need of appropriate rodent models for preclinical studies. In this review, we highlight the most commonly used rodent models (U251, U86, GL261, C6, 9L and CNS-1) with a focus on the pathological and genetic similarities to the human disease. We end with a comprehensive review of the CNS-1 rodent model

    A Deep Multicolor Survey. VI. Near-Infrared Observations, Selection Effects, and Number Counts

    Get PDF
    I present near-infrared J (1.25um), H (1.65um), and K (2.2um) imaging observations of 185 square arcminutes in 21 high galactic latitude fields. These observations reach limiting magnitudes of J ~ 21 mag, H ~ 20 mag and K ~ 18.5 mag. The detection efficiency, photometric accuracy and selection biases as a function of integrated object brightness, size, and profile shape are quantified in detail. I evaluate several popular methods for measuring the integrated light of faint galaxies and show that only aperture magnitudes provide an unbiased measure of the integrated light that is independent of apparent magnitude. These J, H, and K counts and near-infrared colors are in best agreement with passive galaxy formation models with at most a small amount of merging (for Omega_M = 0.3, Omega_Lambda = 0.7).Comment: AJ Accepted (Feb 2001). 28 pages, 7 embedded ps figures, AASTEX5. Minor changes to submitted version. Also available at http://www.astronomy.ohio-state.edu/~martini/pubs

    Absolute Proper Motions to B~22.5: V. Detection of Sagittarius Dwarf Spheroidal Debris in the Direction of the Galactic Anticenter

    Full text link
    We have detected a population of predominantly blue (B-V <= 1.1) stars in the direction l = 167 deg., b = -35 deg. (Kapteyn Selected Area 71) that cannot be accounted for by standard starcount models. Down to V ~ 20, the colors and magnitudes of these stars are similar to those of the southern overdensity detected by the Sloan Digital Sky Survey, and identified as stripped material from the Sagittarius dwarf spheroidal galaxy. We present absolute proper motions for the stars in SA 71, and we find that the excess blue stars represent a distinct, kinematically cooler component than the Galactic field, and in reasonable agreement with predictions of Sgr disruption models. The density of the excess SA 71 stars at V ~ 18.8 and B-V <=1.1 is within a factor of two of the density of the SDSS-south Sgr stripped material, and of that predicted by the Helmi and White disruption model. Three additional anticenter fields (SA 29, 45 and 118) show very good agreement with standard starcount models.Comment: 13 pages, 3 figures, submitted to ApJL, accepted for Ap

    Absolute Proper Motion of the Fornax Dwarf Spheroidal Galaxy from Photographic and HST WFPC2 Data

    Full text link
    We have measured the absolute proper motion of the Fornax dwarf spheroidal galaxy from a combination of photographic plate material and HST WFPC2 data that provide a time baseline of up to 50 years. The extragalactic reference frame consists of 8 QSO images and 48 galaxies. The absolute proper motion is mu_alpha cos(delta) = 0.59 +-0.16 mas/yr and mu_delta = -0.15 +- 0.16 mas/yr. The corresponding orbit of Fornax is polar, with an eccentricity of 0.27, and a radial period of 4.5 Gyr. Fornax's current location is near pericenter. The direction of the motion of Fornax supports the notion that Fornax belongs to the Fornax-LeoI-LeoII-Sculptor-Sextans stream as hypothesized by Lynden-Bell (1976, 1982) and Majewski (1994). According to our orbit determination, Fornax crossed the Magellanic plane \~190 Myr ago, a time that coincides with the termination of the star-formation process in Fornax. We propose that ram-pressure stripping due to the passage of Fornax through a gaseous medium denser than the typical intragalactic medium left behind from the LMC may have caused the end of star formation in Fornax. The excess, anomalous clouds within the South Galactic pole region of the Magellanic Stream whose origin has long been debated in the literature as constituents of either the Magellanic Stream or of the extragalactic Sculptor group, are found to lie along the orbit of Fornax. We speculate that these clouds are stripped material from Fornax as the dwarf crossed the Magellanic Clouds' orbit.Comment: Accepted for publication in Astronomical Journal. The version with high resolution figures can be found at ftp://pegasus.astro.yale.edu/pub/dana/paper
    • …
    corecore