1,527 research outputs found

    Chiral Expansion, Renormalization and the Nuclear Force

    Get PDF
    The renormalization of singular chiral potentials as applied to NN scattering and the structure of the deuteron is discussed. It is shown how zero range theories may be implemented non-perturbatively as constrained from known long range NN forces.Comment: Talk at International IUPAP Conference on Few-Body Problems in Physics (FB18), Santos-Sao Paulo (Brasil), 21-26 August 200

    Deuteron radial moments for renormalized chiral potentials

    Get PDF
    We calculate deuteron positive and negative radial moments involving any bilinear function of the deuteron S and D wave functions for renormalized OPE and TPE chiral potentials. The role played by the strong singularities of the potentials at the origin and the short distance insensitivity of the results when the potentials are fully iterated is emphasized as compared to realistic potentials.Comment: 3 pages, 2 figures. Poster presented at 4th International Conference on Quarks and Nuclear Physics (QNP06), Madrid, Spain, 5-10 Jun 200

    Renormalization Group Analysis of Boundary Conditions in Potential Scattering

    Full text link
    We analyze how a short distance boundary condition for the Schrodinger equation must change as a function of the boundary radius by imposing the physical requirement of phase shift independence on the boundary condition. The resulting equation can be interpreted as a variable phase equation of a complementary boundary value problem. We discuss the corresponding infrared fixed points and the perturbative expansion around them generating a short distance modified effective range theory. We also discuss ultraviolet fixed points, limit cycles and attractors with a given fractality which take place for singular attractive potentials at the origin. The scaling behaviour of scattering observables can analytically be determined and is studied with some emphasis on the low energy nucleon-nucleon interaction via singular pion exchange potentials. The generalization to coupled channels is also studied.Comment: 31 pages, 8 figure

    Gauge invariance in the presence of a cutoff

    Get PDF
    We use the method of gauging equations to construct the electromagnetic current operator for the two-nucleon system in a theory with a finite cutoff. The employed formulation ensures that the two-nucleon T-matrix and corresponding five-point function, in the cutoff theory, are identical to the ones formally defined by a reference theory without a cutoff. A feature of our approach is that it effectively introduces a cutoff into the reference theory in a way that maintains the long-range part of the exchange current operator; for applications to effective field theory (EFT), this property is usually sufficient to guarantee the predictive power of the resulting cutoff theory. In addition, our approach leads to Ward-Takahashi (WT) identities that are linear in the interactions. From the point of view of EFT's where such a WT identity is satisfied in the reference theory, this ensures that gauge invariance in the cutoff theory is maintained order by order in the expansion.Comment: 15 pages, 2 figure

    Kohn-Sham calculations combined with an average pair-density functional theory

    Full text link
    A recently developed formalism in which Kohn-Sham calculations are combined with an ``average pair density functional theory'' is reviewed, and some new properties of the effective electron-electron interaction entering in this formalism are derived. A preliminary construction of a fully self-consitent scheme is also presented in this framework.Comment: submitted to Int. J. Mod. Phys. B (proceedings of the 30th International Workshop on Condensed Matter Theories
    corecore