15 research outputs found

    Reaching Performance in Heathy Individuals and Stroke Survivors Improves after Practice with Vibrotactile State Feedback

    Get PDF
    Stroke causes deficits of cognition, motor, and/or somatosensory functions. These deficits degrade the capability to perform activities of daily living (ADLs). Many research investigations have focused on mitigating the motor deficits of stroke through motor rehabilitation. However, somatosensory deficits are common and may contribute importantly to impairments in the control of functional arm movement. This dissertation advances the goal of promoting functional motor recovery after stroke by investigating the use of a vibrotactile feedback (VTF) body-machine interface (BMI). The VTF BMI is intended to improve control of the contralesional arm of stroke survivors by delivering supplemental limb-state feedback to the ipsilesional arm, where somatosensory feedback remains intact. To develop and utilize a VTF BMI, we first investigated how vibrotactile stimuli delivered on the arm are perceived and discriminated. We determined that stimuli are better perceived sequentially than those delivered simultaneously. Such stimuli can propagate up to 8 cm from the delivery site, so future applications should consider adequate spacing between stimulation sites. We applied these findings to create a multi-channel VTF interface to guide the arm in the absence of vision. In healthy people, we found that short-term practice, less than 2.5 hrs, allows for small improvements in the accuracy of horizontal planar reaching. Long-term practice, about 10 hrs, engages motor learning such that the accuracy and efficiency of reaching is improved and cognitive loading of VTF-guided reaching is reduced. During practice, participants adopted a movement strategy whereby BMI feedback changed in just one channel at a time. From this observation, we sought to develop a practice paradigm that might improve stroke survivors’ learning of VTF-guided reaching without vision. We investigated the effects of practice methods (whole practice vs part practice) in stroke survivors’ capability to make VTF-guided arm movements. Stroke survivors were able to improve the accuracy of VTF-guided reaching with practice, however there was no inherent differences between practice methods. In conclusion, practice on VTF-guided 2D reaching can be used by healthy people and stroke survivors. Future studies should investigate long-term practice in stroke survivors and their capability to use VTF BMIs to improve performance of unconstrained actions, including ADLs

    Vibration Propagation on the Skin of the Arm

    Get PDF
    Vibrotactile interfaces are an inexpensive and non-invasive way to provide performance feedback to body-machine interface users. Interfaces for the upper extremity have utilized a multi-channel approach using an array of vibration motors placed on the upper extremity. However, for successful perception of multi-channel vibrotactile feedback on the arm, we need to account for vibration propagation across the skin. If two stimuli are delivered within a small distance, mechanical propagation of vibration can lead to inaccurate perception of the distinct vibrotactile stimuli. This study sought to characterize vibration propagation across the hairy skin of the forearm. We characterized vibration propagation by measuring accelerations at various distances from a source vibration of variable intensities (100–240 Hz). Our results showed that acceleration from the source vibration was present at a distance of 4 cm at intensities \u3e150 Hz. At distances greater than 8 cm from the source, accelerations were reduced to values substantially below vibrotactile discrimination thresholds for all vibration intensities. We conclude that in future applications of vibrotactile interfaces, stimulation sites should be separated by a distance of at least 8 cm to avoid potential interference in vibration perception caused by propagating vibrations

    A Two Alternative Forced Choice Method for Assessing Vibrotactile Discrimination Thresholds in The Lower Limb

    Get PDF
    The development of an easy to implement, quantitative measure to examine vibration perception would be useful for future application in clinical settings. Vibration sense in the lower limb of younger and older adults was examined using the method of constant stimuli (MCS) and the two-alternative forced choice paradigm. The focus of this experiment was to determine an appropriate stimulation site on the lower limb (tendon versus bone) to assess vibration threshold and to determine if the left and right legs have varying thresholds. Discrimination thresholds obtained at two stimulation sites in the left and right lower limbs showed differences in vibration threshold across the two ages groups, but not across sides of the body nor between stimulation sites within each limb. Overall, the MCS can be implemented simply, reliably, and with minimal time. It can also easily be implemented with low-cost technology. Therefore, it could be a good candidate method to assess the presence of specific deep sensitivity deficits in clinical practice, particularly in populations likely to show the onset of sensory deficits

    Extended Training Improves the Accuracy and Efficiency of Goal-Directed Reaching Guided by Supplemental Kinesthetic Vibrotactile Feedback

    No full text
    Prior studies have shown that the accuracy and efficiency of reaching can be improved using novel sensory interfaces to apply task-specific vibrotactile feedback (VTF) during movement. However, those studies have typically evaluated performance after less than 1 h of training using VTF. Here, we tested the effects of extended training using a specific form of vibrotactile cues—supplemental kinesthetic VTF—on the accuracy and temporal efficiency of goal-directed reaching. Healthy young adults performed planar reaching with VTF encoding of the moving hand\u27s instantaneous position, applied to the non-moving arm. We compared target capture errors and movement times before, during, and after approximately 10 h (20 sessions) of training on the VTF-guided reaching task. Initial performance of VTF-guided reaching showed that people were able to use supplemental VTF to improve reaching accuracy. Performance improvements were retained from one training session to the next. After 20 sessions of training, the accuracy and temporal efficiency of VTF-guided reaching were equivalent to or better than reaches performed with only proprioception. However, hand paths during VTF-guided reaching exhibited a persistent strategy where movements were decomposed into discrete sub-movements along the cardinal axes of the VTF display. We also used a dual-task condition to assess the extent to which performance gains in VTF-guided reaching resist dual-task interference. Dual-tasking capability improved over the 20 sessions, such that the primary VTF-guided reaching and a secondary choice reaction time task were performed with increasing concurrency. Thus, VTF-guided reaching is a learnable skill in young adults, who can achieve levels of accuracy and temporal efficiency equaling or exceeding those observed during movements guided only by proprioception. Future studies are warranted to explore learnability in older adults and patients with proprioceptive deficits, who might benefit from using wearable sensory augmentation technologies to enhance control of arm movements

    Vibrotactile Perception for Sensorimotor Augmentation: Perceptual Discrimination of Vibrotactile Stimuli Induced by Low-Cost Eccentric Rotating Mass Motors at Different Body Locations in Young, Middle-Aged, and Older Adults

    No full text
    Sensory augmentation technologies are being developed to convey useful supplemental sensory cues to people in comfortable, unobtrusive ways for the purpose of improving the ongoing control of volitional movement. Low-cost vibration motors are strong contenders for providing supplemental cues intended to enhance or augment closed-loop feedback control of limb movements in patients with proprioceptive deficits, but who still retain the ability to generate movement. However, it remains unclear what form such cues should take and where on the body they may be applied to enhance the perception-cognition-action cycle implicit in closed-loop feedback control. As a step toward addressing this knowledge gap, we used low-cost, wearable technology to examine the perceptual acuity of vibrotactile stimulus intensity discrimination at several candidate sites on the body in a sample of participants spanning a wide age range. We also sought to determine the extent to which the acuity of vibrotactile discrimination can improve over several days of discrimination training. Healthy adults performed a series of 2-alternative forced choice experiments that quantified capability to perceive small differences in the intensity of stimuli provided by low-cost eccentric rotating mass vibration motors fixed at various body locations. In one set of experiments, we found that the acuity of intensity discrimination was poorer in older participants than in middle-aged and younger participants, and that stimuli applied to the torso were systematically harder to discriminate than stimuli applied to the forearm, knee, or shoulders, which all had similar acuities. In another set of experiments, we found that older adults could improve intensity discrimination over the course of 3 days of practice on that task such that their final performance did not differ significantly from that of younger adults. These findings may be useful for future development of wearable technologies intended to improve the control of movements through the application of supplemental vibrotactile cues

    Neutrophil lymphocyte ratio significantly improves the Framingham risk score in prediction of coronary heart disease mortality: insights from the National Health and Nutrition Examination Survey-III.

    No full text
    BACKGROUND: Neutrophil lymphocyte ratio (NLR) has been shown to predict cardiovascular events in several studies. We sought to study if NLR predicts coronary heart disease (CHD) in a healthy US cohort and if it reclassifies the traditional Framingham risk score (FRS) model. METHODS: We performed post hoc analysis of National Health and Nutrition Examination Survey-III (1998-94) including subjects aged 30-79 years free from CHD or CHD equivalent at baseline. Primary endpoint was death from ischemic heart disease. NLR was divided into four categories:4.5. Statistical analyses involved multivariate Cox proportional hazards models as well as discrimination, calibration and reclassification. RESULTS: We included 7363 subjects with a mean follow up of 14.1 years. There were 231 (3.1%) CHD deaths, more in those with NLR\u3e4.5 (11%) compared to NLR4.5 was 2.68 (95% CI 1.07-6.72, p=0.035). There was no significant improvement in C-index (0.8709 to 0.8713) or area under curve (0.8520 to 0.8531) with addition of NLR to FRS model. Model with NLR was well calibrated with Hosmer-Lemeshow chi-square of 8.57 (p=0.38). Overall net reclassification index (NRI) was 6.6% (p=0.003) with intermediate NRI of 10.1% (p CONCLUSIONS: NLR can independently predict CHD mortality in an asymptomatic general population cohort. It reclassifies intermediate risk category of FRS, with significant upward reclassification. NLR should be considered as an inflammatory biomarker of CHD
    corecore