2 research outputs found

    Identifying Effective Features and Classifiers for Short Term Rainfall Forecast Using Rough Sets Maximum Frequency Weighted Feature Reduction Technique

    Get PDF
    Precise rainfall forecasting is a common challenge across the globe in meteorological predictions. As rainfall forecasting involves rather complex dynamic parameters, an increasing demand for novel approaches to improve the forecasting accuracy has heightened. Recently, Rough Set Theory (RST) has attracted a wide variety of scientific applications and is extensively adopted in decision support systems. Although there are several weather prediction techniques in the existing literature, identifying significant input for modelling effective rainfall prediction is not addressed in the present mechanisms. Therefore, this investigation has examined the feasibility of using rough set based feature selection and data mining methods, namely Naïve Bayes (NB), Bayesian Logistic Regression (BLR), Multi-Layer Perceptron (MLP), J48, Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Machine (SVM), to forecast rainfall. Feature selection or reduction process is a process of identifying a significant feature subset, in which the generated subset must characterize the information system as a complete feature set. This paper introduces a novel rough set based Maximum Frequency Weighted (MFW) feature reduction technique for finding an effective feature subset for modelling an efficient rainfall forecast system. The experimental analysis and the results indicate substantial improvements of prediction models when trained using the selected feature subset. CART and J48 classifiers have achieved an improved accuracy of 83.42% and 89.72%, respectively. From the experimental study, relative humidity2 (a4) and solar radiation (a6) have been identified as the effective parameters for modelling rainfall prediction

    Randomized Clinical Trial of High-Dose Rifampicin With or Without Levofloxacin Versus Standard of Care for Pediatric Tuberculous Meningitis: The TBM-KIDS Trial

    Get PDF
    Background. Pediatric tuberculous meningitis (TBM) commonly causes death or disability. In adults, high-dose rifampicin may reduce mortality. The role of fluoroquinolones remains unclear. There have been no antimicrobial treatment trials for pediatric TBM. Methods. TBM-KIDS was a phase 2 open-label randomized trial among children with TBM in India and Malawi. Participants received isoniazid and pyrazinamide plus: (i) high-dose rifampicin (30 mg/kg) and ethambutol (R30HZE, arm 1); (ii) high-dose rifampicin and levofloxacin (R30HZL, arm 2); or (iii) standard-dose rifampicin and ethambutol (R15HZE, arm 3) for 8 weeks, followed by 10 months of standard treatment. Functional and neurocognitive outcomes were measured longitudinally using Modified Rankin Scale (MRS) and Mullen Scales of Early Learning (MSEL). Results. Of 2487 children prescreened, 79 were screened and 37 enrolled. Median age was 72 months; 49%, 43%, and 8% had stage I, II, and III disease, respectively. Grade 3 or higher adverse events occurred in 58%, 55%, and 36% of children in arms 1, 2, and 3, with 1 death (arm 1) and 6 early treatment discontinuations (4 in arm 1, 1 each in arms 2 and 3). By week 8, all children recovered to MRS score of 0 or 1. Average MSEL scores were significantly better in arm 1 than arm 3 in fine motor, receptive language, and expressive language domains (P < .01). Conclusions. In a pediatric TBM trial, functional outcomes were excellent overall. The trend toward higher frequency of adverse events but better neurocognitive outcomes in children receiving high-dose rifampicin requires confirmation in a larger trial. Clinical Trials Registration. NCT02958709
    corecore