11 research outputs found

    RTM3

    Full text link
    Restriction of long-distance movement of several potyviruses in Arabidopsis (Arabidopsis thaliana) is controlled by at least three dominant restricted TEV movement (RTM) genes, named RTM1, RTM2, and RTM3. RTM1 encodes a protein belonging to the jacalin family, and RTM2 encodes a protein that has similarities to small heat shock proteins. In this article, we describe the positional cloning of RTM3, which encodes a protein belonging to an undescribed protein family of 29 members that has a meprin and TRAF homology (MATH) domain in its amino-terminal region and a coiled-coil domain at its carboxy-terminal end. Involvement in the RTM resistance system is the first biological function experimentally identified for a member of this new gene family in plants. Our analyses showed that the coiled-coil domain is not only highly conserved between RTM3-homologous MATH-containing proteins but also in proteins lacking a MATH domain. The cluster organization of the RTM3 homologs in the Arabidopsis genome suggests the role of duplication events in shaping the evolutionary history of this gene family, including the possibility of deletion or duplication of one or the other domain. Protein-protein interaction experiments revealed RTM3 self-interaction as well as an RTM1-RTM3 interaction. However, no interaction has been detected involving RTM2 or the potyviral coat protein previously shown to be the determinant necessary to overcome the RTM resistance. Taken together, these observations strongly suggest the RTM proteins might form a multiprotein complex in the resistance mechanism to block the long-distance movement of potyviruses

    A member of a new plant gene family encoding a meprin and TRAF homology (MATH) domain-containing protein is involved in restriction of long distance movement of plant viruses

    No full text
    Restriction of long distance movement of several potyviruses in Arabidopsis thaliana is controlled by at least three dominant restricted TEV movement (RTM) genes, named RTM1, RTM2 and RTM3 and acts as a non-conventional resistance. RTM1 encodes a protein belonging to the jacalin family and RTM2 encodes a protein which has similarities to small heat shock proteins. The recent cloning of RTM3 which encodes a protein belonging to an unknown protein family of 29 members that has a meprin and TRAF homology (MATH) domain in its N-terminal region and a coiled-coil (CC) domain at its C-terminal end is an important breakthrough for a better understanding of this resistance process. Not only the third gene involved in this resistance has been identified and has allowed revealing a new gene family in plant but the discovery that the RTM3 protein interacts directly with RTM1 strongly suggests that the RTM proteins form a multimeric complex. However, these data also highlight striking similarities of the RTM resistance with the well known R-gene mediated resistance

    Genome‐wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (Tu MV ) interactions in the field

    No full text
    The genetic architecture of plant response to viruses has often been studied in model nonnatural pathosystems under controlled conditions. There is an urgent need to elucidate the genetic architecture of the response to viruses in a natural setting. A field experiment was performed in each of two years. In total, 317 Arabidopsis thaliana accessions were inoculated with its natural Turnip mosaic virus (TuMV). The accessions were phenotyped for viral accumulation, frequency of infected plants, stem length and symptoms. Genome-wide association mapping was performed. Arabidopsis thaliana exhibits extensive natural variation in its response to TuMV in the field. The underlying genetic architecture reveals a more quantitative picture than in controlled conditions. Ten genomic regions were consistently identified across the two years. RTM3 (Restricted TEV Movement 3) is a major candidate for the response to TuMV in the field. New candidate genes include Dead box helicase 1, a Tim Barrel domain protein and the eukaryotic translation initiation factor eIF3b. To our knowledge, this study is the first to report the genetic architecture of quantitative response of A. thaliana to a naturally occurring virus in a field environment, thereby highlighting relevant candidate genes involved in plant virus interactions in nature

    RTM3, which controls long distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology (MATH) domain-containing protein

    No full text
    Restriction of long-distance movement of several potyviruses in Arabidopsis (Arabidopsis thaliana) is controlled by at least three dominant restricted TEV movement (RTM) genes, named RTM1, RTM2, and RTM3. RTM1 encodes a protein belonging to the jacalin family, and RTM2 encodes a protein that has similarities to small heat shock proteins. In this article, we describe the positional cloning of RTM3, which encodes a protein belonging to an undescribed protein family of 29 members that has a meprin and TRAF homology (MATH) domain in its amino-terminal region and a coiled-coil domain at its carboxy-terminal end. Involvement in the RTM resistance system is the first biological function experimentally identified for a member of this new gene family in plants. Our analyses showed that the coiled-coil domain is not only highly conserved between RTM3-homologous MATH-containing proteins but also in proteins lacking a MATH domain. The cluster organization of the RTM3 homologs in the Arabidopsis genome suggests the role of duplication events in shaping the evolutionary history of this gene family, including the possibility of deletion or duplication of one or the other domain. Protein-protein interaction experiments revealed RTM3 self-interaction as well as an RTM1-RTM3 interaction. However, no interaction has been detected involving RTM2 or the potyviral coat protein previously shown to be the determinant necessary to overcome the RTM resistance. Taken together, these observations strongly suggest the RTM proteins might form a multiprotein complex in the resistance mechanism to block the long-distance movement of potyviruses

    RTM allelic pattern and infection phenotype with LMV isolates of each Arabidopsis accession.

    No full text
    a<p>Numbers in each column corresponding to each <i>RTM</i> allele refer to the <i>RTM</i> allele numbers described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039169#pone-0039169-g001" target="_blank">Figure 1</a>. The non-functional alleles are in bold.</p>b<p>R: resistant to LMV systemic infection; S: susceptible to LMV systemic infection; - : not determined.</p

    Genetic mapping of resistance loci using the Col-5xNd-1 RIL family.

    No full text
    a<p>distance between QTL and the first marker of the corresponding chromosome.</p>b<p>additive effects, indicates the contribution of Nd alleles.</p>c<p>the standard error of estimated QTL effect and P-value.</p>d<p>heritability of additive effect, contribution explained by putative main-effect QTL.</p

    Q-RT-PCR analysis of the expression level of the three <i>RTM</i> genes in different Arabidopsis accessions.

    No full text
    <p>(<b>A</b>) <i>RTM1</i> expression; (<b>B</b>) <i>RTM2</i> expression; (<b>C</b>) <i>RTM3</i> expression. Fold change is determined relative to the value of Col-0 which is set arbitrarily at 1. The qPCR results are normalized to an ubiquitine-conjugating enzyme family gene (At2g36060). The graph represents the average values from three independent experiments involving 3 plants each. Bars represent SD of Ct values calculated using the Roche software. * : P<0.05; indicates that scoring values differ significantly from Col-0. Nd: not determined.</p
    corecore