31 research outputs found

    PHOTOCATALYTIC DEGRADATION OF 4-TERT-BUTYLPHENOL USING SOLAR LIGHT RESPONSIVE AG2CO3

    Get PDF
    In this work, Ag2CO3 was prepared via a solution-based method and was further characterized by XRD, Raman spectroscopy, SEM/EDS analysis, and UV-VIS spectroscopy. SEM results revealed the formation of micro-sized particles with a rectangular shape. The photocatalytic activity of the catalyst was evaluated in the degradation of 4-tert-butylphenol (4-t-BP) under simulated solar light irradiation. The effects of 4-t-BP initial concentration (2.5–10 ppm), catalyst dosage (100–300 mg/L), different types of lamp sources, and water matrix were investigated. Complete 4-t-BP (5 ppm) degradation was achieved after 60 min by Ag2CO3 (200 mg/L). The effect of anions such as CO32−, HCO3−, NO3−, and Cl- in the concentration range of 100–300 mg/L was also studied. CO32− promoted the photocatalytic degradation process, while HCO3− and NO3− exhibited an inhibition effect, which was marked with increasing HCO3− and NO3− concentrations. The presence of Cl− at the concentration of 100 mg/L increased 4-t-BP degradation, but higher concentrations inhibited the photocatalytic reaction. Cyclic experiments showed that the catalyst practically retained its catalytic activity toward 4-t-BP degradation after three successive experimental runs. Keywords: 4-tert-butylphenol; degradation; heterogeneous photocatalysis; solar ligh

    Degradation of methylparaben by sonocatalysis using a Co–Fe magnetic carbon xerogel

    Get PDF
    The degradation of methylparaben (MP) through 20 kHz ultrasound coupled with a bimetallic Co-Fe carbon xerogel (CX/CoFe) was investigated in this work. Experiments were performed at actual power densities of 25 and 52 W/L, catalyst loadings of 12.5 and 25 mg/L, MP concentrations between 1 and 4.2 mg/L and initial pH values between 3 and 10 in ultrapure water (UPW). Matrix effects were studied in bottled water (BW) and secondary treated wastewater (WW), as well as in UPW spiked with bicarbonate, chloride or humic acid. The pseudo–first order kinetics of MP degradation increase with power and catalyst loading and decrease with MP concentration and matrix complexity; moreover, the reaction is also favored at near–neutral conditions and in the presence of dissolved oxygen. The contribution of the catalyst is synergistic to the sonochemical degradation of MP and the extent of synergy is quantified to be>45%. This effect was ascribed to the ability of CX/CoFe to catalyze the dissociation of hydrogen peroxide, formed through water sonolysis, to hydroxyl radicals. Experiments in UPW spiked with an excess of tert-butanol (radical scavenger), sodium dodecyl sulfate or sodium acetate (surfactants) led to substantially decreased rates (i.e. by about 8 times), thus implying that the liquid bulk and the gas-liquid interface are major reaction sites. The stability of CX/CoFe was shown by performing reusability cycles employing magnetic separation of the catalyst after the treatment stage. It was found that the CX/CoFe catalyst can be reused in up to four successive cycles without noteworthy variation of the overall performance of the sonocatalytic process.This work is a result of: project “AIProcMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); Project Associate Laboratory LSRE-LCM – UID/EQU/50020/2019 – funded by national funds through FCT/MCTES (PIDDAC).info:eu-repo/semantics/publishedVersio

    Biochars and Their Use as Transesterification Catalysts for Biodiesel Production: A Short Review

    No full text
    Biodiesel can be a significant alternative for diesel. Usually, it is produced through transesterification with a base catalyst. Using heterogeneous catalysts for transesterification, the process can be more efficient. Among the possible catalysts that can be used, biochars combine high performance for transesterification and valorization of waste biomass. Biochars are cheap materials, and are easy to activate through chemical treatment with acid or base solutions. In this short review, the application of biochar as solid heterogeneous catalysts for transesterification of lipids to produce biodiesel is discussed

    The Influence of Preparation Method on the Physicochemical Characteristics and Catalytic Activity of Co/TiO2 Catalysts

    No full text
    Two Co/TiO2 catalysts with 7% CoO/g loading were prepared using equilibrium deposition filtration and the dry impregnation method. The two catalysts were characterized with various physicochemical techniques and tested for the degradation of sulfamethaxazole (SMX) using sodium persulfate (SPS) as the oxidant. It was found that the two catalysts exhibit different physicochemical characteristics. The equilibrium deposition filtration (EDF) catalyst had a higher dispersion of cobalt phase, more easily reduced Co(III) species, and a higher ratio of Co(III)/Co(II) species. The interactions between Co-deposited species and the titania surface were monitored with diffuse reflectance spectroscopy in all the preparation steps, and it was found that they increased during drying and calcination, while EDF favored the formation of surface species with strong interactions with the support. Finally, the EDF catalyst was more active for the degradation of sulfamethaxazole due to its better physicochemical characteristics

    Tuning the Physicochemical Properties of Nanostructured Materials through Advanced Preparation Methods

    No full text
    Over the last few decades, nanotechnology has received a huge level of interest due to its extensive applications in various fields, including catalysis, electronics, optics, energy, and the environment [...

    Studying the Formation of Biofilms on Supports with Different Polarity and Their Efficiency to Treat Wastewater

    Get PDF
    The main objective of this study was the evaluation of biofilm formation onto different supports and of biofilm efficiency to treat wastewater. Two different reactors were used, one with porous polyvinyl alcohol gel (PVA) biocarrier and another with a high-density polyethylene (PE) biocarrier. The reactor performance was evaluated and the biofilm formed was analyzed with potentiometric mass titrations. The biofilm formation was monitored with diffuse reflectance spectroscopy. The presence of the support did not alter the nature of the biofilm. However, the quantity of the biofilm formed was higher when polar surface groups were present on the support

    Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water

    No full text
    The aim of this work was to compare the performance of biochar from various food processing wastes of different origin for the removal of different nutrients from water. Eggshells (EGS), rice husk (RH), and coffee biochars were pyrolyzed at 400 and 800 °C and were examined for the removal of phosphates, nitrates, and ammonia nitrogen. The raw materials were also modified with magnesium chloride in order to investigate their sorption behavior. The highest sorption capacity (qmax) for phosphates and ammonium was observed with EGS pyrolyzed at 800 °C and was 11.45 mg PO43−-P/g and 11.59 mg NH3-N/g, while the highest nitrates sorption capacity was observed with the magnesium-modified RH pyrolyzed at 800 °C (5.24 mg NO3−-N). The modified EGS biochars pyrolyzed at 800 °C had almost the half the sorption capacity for phosphates and nitrates compared to the unmodified materials. The modification of RH pyrolyzed at 800 °C resulted in higher sorption capacity by 34 and 158% for phosphates and ammonium, respectively. The coffee raw and modified biochars were less efficient in nutrient removal compared to the other materials. The specific surface area values of the biochars examined is not a decisive factor for nutrient sorption. The reaction between magnesium and calcium (for the eggshell samples) ions with phosphates is responsible for the higher sorption efficiency. On the other hand, the presence of magnesium and calcium ions has a detrimental effect on the sorption of NH3-N

    Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water

    No full text
    The aim of this work was to compare the performance of biochar from various food processing wastes of different origin for the removal of different nutrients from water. Eggshells (EGS), rice husk (RH), and coffee biochars were pyrolyzed at 400 and 800 °C and were examined for the removal of phosphates, nitrates, and ammonia nitrogen. The raw materials were also modified with magnesium chloride in order to investigate their sorption behavior. The highest sorption capacity (qmax) for phosphates and ammonium was observed with EGS pyrolyzed at 800 °C and was 11.45 mg PO43−-P/g and 11.59 mg NH3-N/g, while the highest nitrates sorption capacity was observed with the magnesium-modified RH pyrolyzed at 800 °C (5.24 mg NO3−-N). The modified EGS biochars pyrolyzed at 800 °C had almost the half the sorption capacity for phosphates and nitrates compared to the unmodified materials. The modification of RH pyrolyzed at 800 °C resulted in higher sorption capacity by 34 and 158% for phosphates and ammonium, respectively. The coffee raw and modified biochars were less efficient in nutrient removal compared to the other materials. The specific surface area values of the biochars examined is not a decisive factor for nutrient sorption. The reaction between magnesium and calcium (for the eggshell samples) ions with phosphates is responsible for the higher sorption efficiency. On the other hand, the presence of magnesium and calcium ions has a detrimental effect on the sorption of NH3-N
    corecore