166 research outputs found

    Blood Levels of Co-inhibitory-Receptors: A Biomarker of Disease Prognosis in Multiple Sclerosis

    Get PDF
    Background: The clinical course of multiple sclerosis ranges from benign with little disease progression and minimal disability, to severe disease requiring intensive medical treatment. There are no reliable circulating biomarkers for predicting disease outcome. Co-inhibitory receptors regulate the termination of effective immune responses to infections while limiting autoimmunity and/or immunopathology. Based on this, we studied the potential of circulating co-inhibitory receptor levels as predictive biomarkers of multiple sclerosis outcome.Methods: Co-inhibitory receptor [TIGIT (T cell immunoreceptor with Ig and ITIM domains), TIM-3 (T-cell immunoglobulin and mucin domain–containing 3), LAG-3 (lymphocyte activation gene 3), PD-1 (programmed cell death 1), CTLA-4 (cytotoxic T-lymphocyte–associated protein 4)] expression levels in peripheral blood mononuclear cells (PBMCs) were measured using reverse transcription–PCR in 19 healthy controls and 57 patients with untreated multiple sclerosis. All patients were evaluated for disease outcome and paraclinical measures during the following 9–10 years [progression index, Expanded Disability Status Scale (EDSS) score, number of relapses, number of disease modifying therapies (DMTs), baseline brain magnetic resonance imaging T2 lesion volume, and oligoclonal bands (OCBs)].Results: Patients had significantly lower TIGIT and LAG-3 levels than the controls (P < 0.02 and P < 0.04, respectively). TIM-3 levels were significantly lower in patients with high vs. low disability index and in patients with SPMS diagnosis compared to patients who remained in the relapsing stage of the disease at final visit (both, P < 0.02). LAG-3 levels were significantly higher in patients with low disability index vs. non-low disability index multiple sclerosis (P < 0.05). TIM-3 and LAG-3 expression levels correlated significantly with 1-year progression index (r2 = 0.076, P < 0.05; 0.087, P < 0.04, respectively) and EDSS score at final visit (r2 = 0.31, P < 0.04; 0.320.088, P < 0.04, respectively). Lower LAG-3 levels were associated with higher DMT switching (r2 = 0.67, P < 0.05). Compared to the paraclinical and clinical parameters alone, the combined data of the baseline co-inhibitory receptor expression levels and the paraclinical and clinical parameters were superior for predicting the patients that would progress to secondary progressive multiple sclerosis (SPMS).Interpretation: This is an initial exploration of the utility of CTLA-4, PD-1, TIM-3, LAG-3, and TIGIT expression levels as prognostic indicators in untreated, recently diagnosed multiple sclerosis. Our results support the value of decreased PBMC expression levels of TIM-3 and LAG-3 at diagnosis as an unfavorable prognostic factor, which is to be confirmed in further studies

    The Dynamic Processing of CD46 Intracellular Domains Provides a Molecular Rheostat for T Cell Activation

    Get PDF
    Adequate termination of an immune response is as important as the induction of an appropriate response. CD46, a regulator of complement activity, promotes T cell activation and differentiation towards a regulatory Tr1 phenotype. This Tr1 differentiation pathway is defective in patients with MS, asthma and rheumatoid arthritis, underlying its importance in controlling T cell function and the need to understand its regulatory mechanisms. CD46 has two cytoplasmic tails, Cyt1 and Cyt2, derived from alternative splicing, which are co-expressed in all nucleated human cells. The regulation of their expression and precise functions in regulating human T cell activation has not been fully elucidated.Here, we first report the novel role of CD46 in terminating T cell activation. Second, we demonstrate that its functions as an activator and inhibitor of T cell responses are mediated through the temporal processing of its cytoplasmic tails. Cyt1 processing is required to turn T cell activation on, while processing of Cyt2 switches T cell activation off, as demonstrated by proliferation, CD25 expression and cytokine secretion. Both tails require processing by Presenilin/γSecretase (P/γS) to exert these functions. This was confirmed by expressing wild-type Cyt1 and Cyt2 tails and uncleavable mutant tails in primary T cells. The role of CD46 tails was also demonstrated with T cells expressing CD19 ectodomain-CD46 C-Terminal Fragment (CTF) fusions, which allowed specific triggering of each tail individually.We conclude that CD46 acts as a molecular rheostat to control human T cell activation through the regulation of processing of its cytoplasmic tails

    International delphi consensus on the management of AQP4-IgG+ NMOSD: recommendations for eculizumab, inebilizumab, and satralizumab

    Get PDF
    BACKGROUND AND OBJECTIVES: Neuromyelitis optica spectrum disorder (NMOSD) is a rare debilitating autoimmune disease of the CNS. Three monoclonal antibodies were recently approved as maintenance therapies for aquaporin-4 immunoglobulin G (AQP4-IgG)-seropositive NMOSD (eculizumab, inebilizumab, and satralizumab), prompting the need to consider best practice therapeutic decision-making for this indication. Our objective was to develop validated statements for the management of AQP4-IgG-seropositive NMOSD, through an evidence-based Delphi consensus process, with a focus on recommendations for eculizumab, inebilizumab, and satralizumab. METHODS: We recruited an international panel of clinical experts in NMOSD and asked them to complete a questionnaire on NMOSD management. Panel members received a summary of evidence identified through a targeted literature review and provided free-text responses to the questionnaire based on both the data provided and their clinical experience. Responses were used to generate draft statements on NMOSD-related themes. Statements were voted on over a maximum of 3 rounds; participation in at least 1 of the first 2 rounds was mandatory. Panel members anonymously provided their level of agreement (6-point Likert scale) on each statement. Statements that failed to reach a predefined consensus threshold (≥67%) were revised based on feedback and then voted on in the next round. Final statements were those that met the consensus threshold (≥67%). RESULTS: The Delphi panel comprised 24 experts, who completed the Delphi process in November 2021 after 2 voting rounds. In round 1, 23/25 statements reached consensus and were accepted as final. The 2 statements that failed to reach consensus were revised. In round 2, both revised statements reached consensus. Twenty-five statements were agreed in total: 11 on initiation of or switching between eculizumab, inebilizumab, and satralizumab; 3 on monotherapy/combination therapy; 7 on safety and patient population considerations; 3 on biomarkers/patient-reported outcomes; and 1 on research gaps. DISCUSSION: An established consensus method was used to develop statements relevant to the management of AQP4-IgG-seropositive NMOSD. These international statements will be valuable for informing individualized therapeutic decision-making and could form the basis for standardized practice guidelines

    The risk of infections for multiple sclerosis and neuromyelitis optica spectrum disorder disease-modifying treatments: Eighth European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop Review. April 2021

    Get PDF
    Over the recent years, the treatment of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) has evolved very rapidly and a large number of disease-modifying treatments (DMTs) are now available. However, most DMTs are associated with adverse events, the most frequent of which being infections. Consideration of all DMT-associated risks facilitates development of risk mitigation strategies. An international focused workshop with expert-led discussions was sponsored by the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) and was held in April 2021 to review our current knowledge about the risk of infections associated with the use of DMTs for people with MS and NMOSD and corresponding risk mitigation strategies. The workshop addressed DMT-associated infections in specific populations, such as children and pregnant women with MS, or people with MS who have other comorbidities or live in regions with an exceptionally high infection burden. Finally, we reviewed the topic of DMT-associated infectious risks in the context of the current SARS-CoV-2 pandemic. Herein, we summarize available evidence and identify gaps in knowledge which justify further research

    Identification of tissue-specific cell death using methylation patterns of circulating DNA

    Get PDF
    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics

    Inhibition of Effector Function but Not T Cell Activation and Increase in FoxP3 Expression in T Cells Differentiated in the Presence of PP14

    Get PDF
    Background: T-helper polarization of naïve T cells is determined by a complex mechanism that involves many factors, eventually leading to activation of Th1, Th2, or Th17 responses or alternatively the generation of regulatory T cells. Placental Protein 14 (PP14) is a 28 kDa glycoprotein highly secreted in early pregnancy that is able to desensitize T cell receptor (TCR) signaling and modulate T cell activation. Methodology/Principal Findings: Prolonged antigen-specific stimulation of T cells in the presence of PP14 resulted in an impaired secretion of IFN-c, IL-5 and IL-17 upon restimulation, although the cells proliferated and expressed activation markers. Furthermore, the generation of regulatory CD4 + CD25 high Foxp3 + T cells was induced in the presence of PP14, in both antigen-specific as well as polyclonal stimulation. In accordance with previous reports, we found that the induction of FoxP3 expression by PP14 is accompanied by down regulation of the PI3K-mTOR signaling pathway. Conclusions/Significance: These data suggest that PP14 arrests T cells in a unique activated state that is not accompanied with the acquisition of effector function, together with promoting the generation of regulatory T cells. Taken together, our results may elucidate the role of PP14 in supporting immune tolerance in pregnancy by reducing T cell effector function

    The Acute Optic Neuritis Network (ACON): Study protocol of a non-interventional prospective multicenter study on diagnosis and treatment of acute optic neuritis

    Get PDF
    Optic neuritis (ON) often occurs at the presentation of multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). The recommended treatment of high-dose corticosteroids for ON is based on a North American study population, which did not address treatment timing or antibody serostatus. The Acute Optic Neuritis Network (ACON) presents a global, prospective, observational study protocol primarily designed to investigate the effect of time to high-dose corticosteroid treatment on 6-month visual outcomes in ON. Patients presenting within 30 days of the inaugural ON will be enrolled. For the primary analysis, patients will subsequently be assigned into the MS-ON group, the aquapotin-4-IgG positive ON (AQP4-IgG+ON) group or the MOG-IgG positive ON (MOG-IgG+ON) group and then further sub-stratified according to the number of days from the onset of visual loss to high-dose corticosteroids (days-to-Rx). The primary outcome measure will be high-contrast best-corrected visual acuity (HC-BCVA) at 6 months. In addition, multimodal data will be collected in subjects with any ON (CIS-ON, MS-ON, AQP4-IgG+ON or MOG-IgG+ON, and seronegative non-MS-ON), excluding infectious and granulomatous ON. Secondary outcomes include low-contrast best-corrected visual acuity (LC-BCVA), optical coherence tomography (OCT), magnetic resonance imaging (MRI) measurements, serum and cerebrospinal fluid (CSF) biomarkers (AQP4-IgG and MOG-IgG levels, neurofilament, and glial fibrillary protein), and patient reported outcome measures (headache, visual function in daily routine, depression, and quality of life questionnaires) at presentation at 6-month and 12-month follow-up visits. Data will be collected from 28 academic hospitals from Africa, Asia, the Middle East, Europe, North America, South America, and Australia. Planned recruitment consists of 100 MS-ON, 50 AQP4-IgG+ON, and 50 MOG-IgG+ON. This prospective, multimodal data collection will assess the potential value of early high-dose corticosteroid treatment, investigate the interrelations between functional impairments and structural changes, and evaluate the diagnostic yield of laboratory biomarkers. This analysis has the ability to substantially improve treatment strategies and the accuracy of diagnostic stratification in acute demyelinating ON
    • …
    corecore