13 research outputs found

    PRADER-WILLI SYNDROME, DIAGNOSTICS AND CURRENCY FEATURES

    Get PDF
    Five boys with Prader-Willi syndrome were examined at the endocrinologist by 2016. All children had minimal diagnostic signs of the syndrome, namely: muscular hypotension, hypogonadism, obesity, mental retardation of varying severity, small hands and feet. In two children there was a disruption of glucose tolerance. All patients had the manifestation of hypergonadotropic hypogonadism. If a minimal diagnostic criteria are found in the newborn, a genetic analysis is necessary

    Quantitative analysis of quantum phase slips in superconducting MoGe nanowires revealed by switching-current statistics

    Full text link
    We measure quantum and thermal phase-slip rates using the standard deviation of the switching current in superconducting nanowires at high bias current. Our rigorous quantitative analysis provides firm evidence for the presence of quantum phase slips (QPS) in homogeneous nanowires. We observe that as temperature is lowered, thermal fluctuations freeze at a characteristic crossover temperature Tq, below which the dispersion of the switching current saturates to a constant value, indicating the presence of QPS. The scaling of the crossover temperature Tq with the critical temperature Tc is linear, which is consistent with the theory of macroscopic quantum tunneling. We can convert the wires from the initial amorphous phase to a single crystal phase, in situ, by applying calibrated voltage pulses. This technique allows us to probe directly the effects of the wire resistance, critical temperature and morphology on thermal and quantum phase slips.Comment: 7 pages, 7 figures, 1 tabl

    Half-Quantum Vortices in Thin Film of Superfluid 3^3He

    Full text link
    Stability of a half-quantum vortex (HQV) in superfluid 3^3He has been discussed recently by Kawakami, Tsutsumi and Machida in Phys. Rev. B {\bf 79}, 092506 (2009). We further extend this work here and consider the A2_2 phase of superfluid 3^3He confined in thin slab geometry and analyze the HQV realized in this setting. Solutions of HQV and singly quantized singular vortex are evaluated numerically by solving the Ginzburg-Landau (GL) equation and respective first critical angular velocities are obtained by employing these solutions. We show that the HQV in the A2_2 phase is stable near the boundary between the A2_2 and A1_1 phases. It is found that temperature and magnetic field must be fixed first in the stable region and subsequently the angular velocity of the system should be increased from zero to a sufficiently large value to create a HQV with sufficiently large probability. A HQV does not form if the system starts with a fixed angular velocity and subsequently the temperature is lowered down to the A2_2 phase. It is estimated that the external magnetic field with strength on the order of 1 T is required to have a sufficiently large domain in the temperature-magnetic field phase diagram to have a stable HQV.Comment: 5 pages, 5 figure

    Magnetic Response in the Holographic Insulator/Superconductor Transition

    Full text link
    We study the magnetic response of holographic superconductors exhibiting an insulating "normal" phase. These materials can be realized as a CFT compactified on a circle, which is dual to the AdS Soliton geometry. We study the response under i) magnetic fields and ii) a Wilson line on the circle. Magnetic fields lead to formation of vortices and allows one to infer that the superconductor is of type II. The response to a Wilson line is in the form of Aharonov-Bohm-like effects. These are suppressed in the holographic conductor/superconductor transition but, instead, they are unsuppressed for the insulator case. Holography, thus, predicts that generically insulators display stronger Aharonov-Bohm effects than conductors. In the fluid-mechanical limit the AdS Soliton is interpreted as a supersolid. Our results imply that supersolids display unsuppressed Aharonov-Bohm (or "Sagnac") effects - stronger than in superfluids.Comment: 31 pages, 24 figures; discussion on vortex lattice, few comments and references added; article published in JHE

    Evaluation of Spin-Triplet Superconductivity in Sr2RuO4

    Full text link
    This review presents a summary and evaluations of the superconducting properties of the layered ruthenate Sr2RuO4 as they are known in the autumn of 2011. This paper appends the main progress that has been made since the preceding review by Mackenzie and Maeno was published in 2003. Here, special focus is placed on the critical evaluation of the spin-triplet, odd-parity pairing scenario applied to Sr2RuO4. After an introduction to superconductors with possible odd-parity pairing, accumulated evidence for the pairing symmetry of Sr2RuO4 is examined. Then, significant recent progress on the theoretical approaches to the superconducting pairing by Coulomb repulsion is reviewed. A section is devoted to some experimental properties of Sr2RuO4 that seem to defy simple explanations in terms of currently available spin-triplet scenario. The next section deals with some new developments using eutectic boundaries and micro-crystals, which reveals novel superconducting phenomena related to chiral edge states, odd-frequency pairing states, and half-fluxoid states. Some of these properties are intimately connected with the properties as a topological superconductor. The article concludes with a summary of knowledge emerged from the study of Sr2RuO4 that are now more widely applied to understand the physics of other unconventional superconductors, as well as with a brief discussion of relatively unexplored but promising areas of ongoing and future studies of Sr2RuO4.Comment: 31 pages, 35 figures, published in J. Phys. Soc. Jpn. as a review article of Special Topic

    Superconducting state evolution with applied magnetic flux in mesoscopic rings

    No full text
    The magnetic flux dependence of the vortex state for small mesoscopic superconducting rings surrounded by a medium is investigated by the phenomenological Ginzburg-Landau theory. The influences of the ring size and the surface superconductivity on the free energy and total supercurrent are studied. For narrow rings, the persistent current evolves towards a periodic behaviour with magnetic flux. The complete paramagnetic or diamagnetic state, corresponding to positive or negative current flowing in the whole ring, can occur. A remarkable intermittent superconducting behaviour for the ground-state transition is found when the strength of surface-suppressed superconductivity is enlarged or the ring size is decreased. Consequently, a pure superconducting state with positive total current can be obtained
    corecore