167 research outputs found

    On Dirac theory in the space with deformed Heisenberg algebra. Exact solutions

    Full text link
    The Dirac equation has been studied in which the Dirac matrices \hat{\boldmath\alpha}, \hat\beta have space factors, respectively ff and f1f_1, dependent on the particle's space coordinates. The ff function deforms Heisenberg algebra for the coordinates and momenta operators, the function f1f_1 being treated as a dependence of the particle mass on its position. The properties of these functions in the transition to the Schr\"odinger equation are discussed. The exact solution of the Dirac equation for the particle motion in the Coulomnb field with a linear dependence of the ff function on the distance rr to the force centre and the inverse dependence on rr for the f1f_1 function has been found.Comment: 13 page

    Behavior of the impurity atom in a weakly-interacting Bose gas

    Full text link
    We studied the properties of a single impurity atom immersed in a dilute Bose condensate at low temperatures. In particular, we perturbatively obtained the momentum dependence of the impurity spectrum and damping. By means of the Brillouin-Wigner perturbation theory we also calculated the self-energy both for attractive and repulsive polaron in the long-wavelength limit. The stability problem of the impurity atom in a weakly-interacting Bose gas is also examined.Comment: 11 pages, 4 figure

    Kepler problem in Dirac theory for a particle with position-dependent mass

    Full text link
    Exact solution of Dirac equation for a particle whose potential energy and mass are inversely proportional to the distance from the force centre has been found. The bound states exist provided the length scale aa which appears in the expression for the mass is smaller than the classical electron radius e2/mc2e^2/mc^2. Furthermore, bound states also exist for negative values of aa even in the absence of the Coulomb interaction. Quasirelativistic expansion of the energy has been carried out, and a modified expression for the fine structure of energy levels has been obtained. The problem of kinetic energy operator in the Schr\"odinger equation is discussed for the case of position-dependent mass. In particular, we have found that for highly excited states the mutual ordering of the inverse mass and momentum operator in the non-relativistic theory is not important.Comment: 9 page
    corecore