3 research outputs found

    Evaluation of Postsurgical Hyperalgesia and Sensitization After Open Inguinal Hernia Repair: A Useful Model for Neuropathic Pain?

    Get PDF
    Cutaneous mechanical hyperalgesia can be induced in healthy volunteers in early phase analgesic studies to model central sensitization, a key mechanism of persistent pain. However, such hyperalgesia is short-lived (a matter of hours), and is used only for assessing only single drug doses. In contrast, postsurgical peri-incisional hyperalgesia may be more persistent and hence be a more useful model for the assessment of the efficacy of new analgesics. We undertook quantitative sensory testing in 18 patients at peri-incisional and nonoperated sites before open inguinal hernia repair and up to the 24th postsurgical week. The spatial extent of punctate hyperalgesia and brush allodynia at the peri-incisional site were greatest at weeks 2 and 4, but had resolved by week 24. Heat allodynia, suggestive of local inflammation or peripheral sensitization, was not observed; instead, there were deficits in cold and heat sensory detection that persisted until week 24. The findings suggest that central sensitization contributes significantly to mechanical hyperalgesia at the peri-incisional site. The prolonged duration of hyperalgesia would be advantageous as a pain model, but there was considerable variability of mechanical hyperalgesia in the cohort; the challenges of recruitment may limit its use to small, early phase analgesic studies. PERSPECTIVE: Peri-incisional mechanical hyperalgesia persists for ≥4 weeks after open inguinal hernia repair and reflects central sensitization; this may have usefulness as a model of chronic pain to assess the potential of antineuropathic analgesics.Unrestricted educational grant from GlaxoSmithKline U

    Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury.

    No full text
    OBJECTIVES: To image amyloid deposition in patients with traumatic brain injury (TBI) using carbon 11-labeled Pittsburgh Compound B ([11C]PiB) positron emission tomography (PET) and to validate these findings using tritium-labeled PiB ([3H]PiB) autoradiography and immunocytochemistry in autopsy-acquired tissue. DESIGN, SETTING, AND PARTICIPANTS: In vivo PET at tertiary neuroscience referral center and ex vivo immunocytochemistry of autopsy-acquired brain tissue from a neuropathology archive. [11C]PiB PET was used to image amyloid deposition in 11 controls (median [range] age, 35 [24-60] years) and in 15 patients (median [range] age, 33 [21-50] years) between 1 and 361 days after a TBI. [3H]PiB autoradiography and immunocytochemistry for β-amyloid (Aβ) and β-amyloid precursor protein in brain tissue were obtained from separate cohorts of 16 patients (median [range] age, 46 [21-70] years) who died between 3 hours and 56 days after a TBI and 7 controls (median [range] age, 61 [29-71] years) who died of other causes. MAIN OUTCOMES AND MEASURES: We quantified the [11C]PiB distribution volume ratio and standardized uptake value ratio in PET images. The distribution volume ratio and the standardized uptake value ratio were measured in cortical gray matter, white matter, and multiple cortical and white matter regions of interest, as well as in striatal and thalamic regions of interest. We examined [3H]PiB binding and Aβ and β-amyloid precursor protein immunocytochemistry in autopsy-acquired brain tissue. RESULTS: Compared with the controls, the patients with TBI showed significantly increased [11C]PiB distribution volume ratios in cortical gray matter and the striatum (corrected P < .05 for both), but not in the thalamus or white matter. Increases in [11C]PiB distribution volume ratios in patients with TBI were seen across most cortical subregions, were replicated using comparisons of standardized uptake value ratios, and could not be accounted for by methodological confounders. Autoradiography revealed [3H]PiB binding in neocortical gray matter, in regions where amyloid deposition was demonstrated by immunocytochemistry; white matter showed Aβ and β-amyloid precursor protein by immunocytochemistry, but no [3H]PiB binding. No plaque-associated amyloid immunoreactivity or [3H]PiB binding was seen in cerebellar gray matter in autopsy-acquired tissue from either controls or patients with TBI, although 1 sample of cerebellar tissue from a patient with TBI showed amyloid angiopathy in meningeal vessels. CONCLUSIONS AND RELEVANCE: [11C]PiB shows increased binding following TBI. The specificity of this binding is supported by neocortical [3H]PiB binding in regions of amyloid deposition in the postmortem tissue of patients with TBI. [11C]PiB PET could be valuable in imaging amyloid deposition following TBI
    corecore