31 research outputs found

    Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma.

    Get PDF
    Bruton tyrosine kinase (BTK) links the B-cell antigen receptor (BCR) and Toll-like receptors with NF-κB. The role of BTK in primary central nervous system (CNS) lymphoma (PCNSL) is unknown. We performed a phase I clinical trial with ibrutinib, the first-in-class BTK inhibitor, for patients with relapsed or refractory CNS lymphoma. Clinical responses to ibrutinib occurred in 10 of 13 (77%) patients with PCNSL, including five complete responses. The only PCNSL with complete ibrutinib resistance harbored a mutation within the coiled-coil domain of CARD11, a known ibrutinib resistance mechanism. Incomplete tumor responses were associated with mutations in the B-cell antigen receptor-associated protein CD79B

    Diffusion-Weighted Echo Planar Imaging Using Multiplexed Sensitivity Encoding and Reverse Polarity Gradient in Head Andneck Cancer: An Initial Study

    No full text
    We aimed to compare the geometric distortion (GD) correction performance and apparent diffusion coefficient (ADC) measurements of single-shot diffusion-weighted echo-planar imaging (SS-DWEPI), multiplexed sensitivity encoding (MUSE)-DWEPI, and MUSE-DWEPI with reverse-polarity gradient (RPG) in phantoms and patients. We performed phantom studies at 3T magnetic resonance imaging (MRI) using the American College of Radiology phantom and Quantitative Imaging Biomarker Alliance DW-MRI ice-water phantom to assess GD and effect of distortion in the measurement of ADC, respectively. Institutional review board approved the prospective clinical component of this study. DW-MRI data were obtained from 11 patients with head and neck cancer using these three DW-MRI methods. Wilcoxon signed-rank (WSR) and Kruskal–Wallis (KW) tests were used to compare ADC values, and qualitative rating by radiologist between three DW-MRI methods. In the ACR phantom, GD of 0.17% was observed for the b = 0 s/mm2 image of the MUSE-DWEPI with RPG method compared with that of 1.53% and 2.1% of MUSE-DWEPI and SS-DWEPI, respectively; The corresponding methods root-mean-square errors were 0.58, 3.37, and 5.07 mm. WSR and KW tests showed no significant difference in the ADC measurement between these three DW-MRI methods for both healthy masseter muscles and neoplasms (P > .05). We observed improvement in spatial accuracy for MUSE-DWEPI with RPG in the head and neck region with a higher correlation (R2 = 0.791) compared with that for SS-DWEPI (R2 = 0.707) and MUSE-DWEPI (R2 = 0.745). MUSE-DWEPI with RPG significantly reduces the distortion compared with MUSE-DWEPI or conventional SS-DWEPI techniques, and the ADC values were similar

    Head-to-Head Evaluation of

    No full text
    Invasive lobular carcinoma (ILC) demonstrates lower conspicuity on 18F-FDG PET than the more common invasive ductal carcinoma. Other molecular imaging methods may be needed for evaluation of this malignancy. As ILC is nearly always (95%) estrogen receptor (ER)-positive, ER-targeting PET tracers such as 16α-18F-fluoroestradiol (18F-FES) may have value. We reviewed prospective trials at Memorial Sloan Kettering Cancer Center using 18F-FES PET/CT to evaluate metastatic ILC patients with synchronous 18F-FDG and 18F-FES PET/CT imaging, which allowed a head-to-head comparison of these 2 PET tracers. Methods: Six prospective clinical trials using 18F-FES PET/CT in patients with metastatic breast cancer were performed at Memorial Sloan Kettering Cancer Center from 2008 to 2019. These trials included 92 patients, of whom 14 (15%) were of ILC histology. Seven of 14 patients with ILC had 18F-FDG PET/CT performed within 5 wk of the research 18F-FES PET/CT and no intervening change in management. For these 7 patients, the 18F-FES and 18F-FDG PET/CT studies were analyzed to determine the total number of tracer-avid lesions, organ systems of involvement, and SUVmax of each organ system for both tracers. Results: In the 7 comparable pairs of scans, there were a total of 254 18F-FES-avid lesions (SUVmax, 2.6-17.9) and 111 18F-FDG-avid lesions (SUVmax, 3.3-9.9) suggestive of malignancy. For 5 of 7 (71%) ILC patients, 18F-FES PET/CT detected more metastatic lesions than 18F-FDG PET/CT. In the same 5 of 7 patients, the SUVmax of 18F-FES-avid lesions was greater than the SUVmax of 18F-FDG-avid lesions. One patient had 18F-FES-avid metastases with no corresponding 18F-FDG-avid metastases. There were no patients with 18F-FDG-avid distant metastases without 18F-FES-avid distant metastases, although in one patient liver metastases were evident on 18F-FDG but not on 18F-FES PET. Conclusion: 18F-FES PET/CT compared favorably with 18F-FDG PET/CT for detection of metastases in patients with metastatic ILC. Larger prospective trials of 18F-FES PET/CT in ILC should be considered to evaluate ER-targeted imaging for clinical value in patients with this histology of breast cancer

    Quantitative Synthetic Magnetic Resonance Imaging for Brain Metastases: A Feasibility Study

    No full text
    The present preliminary study aims to characterize brain metastases (BM) using T1 and T2 maps generated from newer, rapid, synthetic MRI (MAGnetic resonance image Compilation; MAGiC) in a clinical setting. We acquired synthetic MRI data from 11 BM patients on a 3T scanner. A multiple-dynamic multiple-echo (MDME) sequence was used for data acquisition and synthetic image reconstruction, including post-processing. MDME is a multi-contrast sequence that enables absolute quantification of physical tissue properties, including T1 and T2, independent of the scanner settings. In total, 82 regions of interest (ROIs) were analyzed, which were obtained from both normal-appearing brain tissue and BM lesions. The mean values obtained from the 48 normal-appearing brain tissue regions and 34 ROIs of BM lesions (T1 and T2) were analyzed using standard statistical methods. The mean T1 and T2 values were 1143 ms and 78 ms, respectively, for normal-appearing gray matter, 701 ms and 64 ms for white matter, and 4206 ms and 390 ms for cerebrospinal fluid. For untreated BMs, the mean T1 and T2 values were 1868 ms and 100 ms, respectively, and 2211 ms and 114 ms for the treated group. The quantitative T1 and T2 values generated from synthetic MRI can characterize BM and normal-appearing brain tissues

    A magnetic resonance imaging-based approach to quantify radiation-induced normal tissue injuries applied to trismus in head and neck cancer

    No full text
    Background and purpose: In this study we investigated the ability of textures from T1-weighted MRI scans post-contrast (T1wpost) to identify the critical muscle(s) for radiation-induced trismus. Materials and methods: The study included ten cases (Trismus: ≥Grade 1), and ten age-sex-tumor-location-and-stage-matched controls treated with intensity-modulated radiotherapy to 70 [email protected] Gy in 2005–2009. Trismus status and T1wPost were conducted within one year post-radiotherapy. For the masseter, lateral and medial pterygoids, and temporalis (M/LP/MP/T), 24 textures were extracted (Grey Level Co-Occurrence (GLCM), Histogram, and Shape). Univariate logistic regression with Bootstrapping (1000 populations) was applied to compare the muscle mean dose (Dmean) and textures between cases and controls (ipsilateral muscles); candidate predictors were suggested by an average p ≤ 0.20 across all Bootstrap populations. Results: Dmean to M/LP/MP (p = 0.03/0.14/0.09), one MP/T (p = 0.12/0.17), and three M (p = 0.14–0.19) textures were candidate predictors. Three of these textures were GLCM- and two Histogram textures with the former being generally higher and the latter lower for cases compared to controls. The Dmean to M and MP, and Haralick Correlation (GLCM) of MP presented with the best discriminative ability (area under the receiver-operating characteristic curve: 0.85, 0.77, and 0.78), and the correlation between Dmean and this texture was weak (Spearman’s rank correlation coefficient: 0.26–0.27). Conclusions: Our exploratory study points towards an interplay between the dose to the masseter, and the medial pterygoid together with the local relationship between the mean MRI intensity relative to its variance of the medial pterygoid for radiation-induced trismus. This opens up for exploration of this interplay within the radiation-induced trismus etiology in the larger multi-institutional setting. Keywords: Head and neck cancer, Radiotherapy, Trismus, Quantitative image, Texture, Radiomic

    Nongaussian Intravoxel Incoherent Motion Diffusion Weighted and Fast Exchange Regime Dynamic Contrast-Enhanced-MRI of Nasopharyngeal Carcinoma: Preliminary Study for Predicting Locoregional Failure

    No full text
    The aim of the present study was to identify whether the quantitative metrics from pre-treatment (TX) non-Gaussian intravoxel incoherent motion (NGIVIM) diffusion weighted (DW-) and fast exchange regime (FXR) dynamic contrast enhanced (DCE)-MRI can predict patients with locoregional failure (LRF) in nasopharyngeal carcinoma (NPC). Twenty-nine NPC patients underwent pre-TX DW- and DCE-MRI on a 3T MR scanner. DW imaging data from primary tumors were fitted to monoexponential (ADC) and NGIVIM (D, D*, f, and K) models. The metrics Ktrans, ve, and τi were estimated using the FXR model. Cumulative incidence (CI) analysis and Fine-Gray (FG) modeling were performed considering death as a competing risk. Mean ve values were significantly different between patients with and without LRF (p = 0.03). Mean f values showed a trend towards the difference between the groups (p = 0.08). Histograms exhibited inter primary tumor heterogeneity. The CI curves showed significant differences for the dichotomized cutoff value of ADC ≤ 0.68 × 10−3 (mm2/s), D ≤ 0.74 × 10−3 (mm2/s), and f ≤ 0.18 (p < 0.05). τi ≤ 0.89 (s) cutoff value showed borderline significance (p = 0.098). FG’s modeling showed a significant difference for the K cutoff value of ≤0.86 (p = 0.034). Results suggest that the role of pre-TX NGIVIM DW- and FXR DCE-MRI-derived metrics for predicting LRF in NPC than alone

    Quantitative Relaxometry Metrics for Brain Metastases Compared to Normal Tissues: A Pilot MR Fingerprinting Study

    No full text
    The purpose of the present pilot study was to estimate T1 and T2 metric values derived simultaneously from a new, rapid Magnetic Resonance Fingerprinting (MRF) technique, as well as to assess their ability to characterize—brain metastases (BM) and normal-appearing brain tissues. Fourteen patients with BM underwent MRI, including prototype MRF, on a 3T scanner. In total, 108 measurements were analyzed: 42 from solid parts of BM’s (21 each on T1 and T2 maps) and 66 from normal-appearing brain tissue (11 ROIs each on T1 and T2 maps for gray matter [GM], white matter [WM], and cerebrospinal fluid [CSF]). The BM’s mean T1 and T2 values differed significantly from normal-appearing WM (p < 0.05). The mean T1 values from normal-appearing GM, WM, and CSF regions were 1205 ms, 840 ms, and 4233 ms, respectively. The mean T2 values were 108 ms, 78 ms, and 442 ms, respectively. The mean T1 and T2 values for untreated BM (n = 4) were 2035 ms and 168 ms, respectively. For treated BM (n = 17) the T1 and T2 values were 2163 ms and 141 ms, respectively. MRF technique appears to be a promising and rapid quantitative method for the characterization of free water content and tumor morphology in BMs
    corecore