272 research outputs found

    Provenance of Kalahari Sand: Paleoweathering and recycling in a linked fluvial-aeolian system

    Get PDF
    We here review what is known about the dunefields and fluvial systems of the Kalahari Basin in terms of geological setting and Quaternary dynamics and set out what has been hypothesized about the provenance of Kalahari sand so far. Previous work has tackled this problem by applying a limited number of techniques (mostly sediment textures and heavy minerals) to parts of the large dryland. The generally highly quartzose mineralogy of aeolian dunes and their compositional variability have been only broadly evaluated and several sedimentological issues have thus remained controversial, including the relative role played by fluvial processes versus aeolian reworking of older sediments and weathering controls. This reveals a need for a systematic provenance study that considers the entire basin. For this reason, here we combine original petrographic, heavy-mineral, and detrital-zircon geochronology data with previously published clay-mineral, geochemical, and geochronological information to present the first comprehensive provenance study of the vast Kalahari sand sea. Our multi-proxy dataset comprises 100 samples, collected across the Kalahari Basin from 11°S (NW Zambia) to 28°S (NW South Africa) and from 15°E (Angola) to 28°30′W (Zimbabwe). Kalahari aeolian-dune sand mostly consists of monocrystalline quartz associated with durable heavy minerals and thus drastically differs from coastal dunefields of Namibia and Angola, which are notably richer in feldspar, lithic grains, and chemically labile clinopyroxene. The western Kalahari dunefield of southeastern Namibia is distinguished by its quartz-rich feldspatho-quartzose sand, indicating partly first-cycle provenance from the Damara Belt and Mesoproterozoic terranes. Within the basin, supply from Proterozoic outcrops is documented locally. Composition varies notably at the western and eastern edges of the sand sea, reflecting partly first-cycle fluvial supply from crystalline basements of Cambrian to Archean age in central Namibia and western Zimbabwe. Basaltic detritus from Jurassic Karoo lavas is dominant in aeolian dunes near Victoria Falls. Bulk-sediment petrography and geochemistry of northern and central Kalahari pure quartzose sand, together with heavy-mineral and clay-mineral assemblages, indicate extensive recycling via aeolian and ephemeral-fluvial processes in arid climate of sediment strongly weathered during previous humid climatic stages in subequatorial Africa. Distilled homogenized composition of aeolian-dune sand thus reverberates the echo of paleo-weathering passed on to the present landscape through multiple episodes of fluvial and aeolian recycling. Intracratonic sag basins such as the Kalahari contain vast amounts of quartz-rich polycyclic sand that may be tapped by rivers eroding backwards during rejuvenation stages associated with rift propagation. Such an event may considerably increase the sediment flux to the ocean, fostering the progradation of river-fed continental-embankments, as documented by augmented accumulation rates coupled with upward increasing mineralogical durability in the post-Tortonian subsurface succession of the Zambezi Delta. The Central Kalahari is not a true desert. It has none of the naked, shifting sand dunes that typify the Sahara and other great deserts of the world. In some years the rains may exceed twenty — once even forty — inches, awakening a magic green paradise.” Mark Owens, Cry of the Kalahari

    Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    Full text link
    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10^(11) GeV - 10^(16) GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes.Comment: accepted for publication in JCA

    DNA Topoisomerase I Gene Copy Number and mRNA Expression Assessed as Predictive Biomarkers for Adjuvant Irinotecan in Stage II/III Colon Cancer.

    Get PDF
    PURPOSE: Prospective-retrospective assessment of theTOP1gene copy number andTOP1mRNA expression as predictive biomarkers for adjuvant irinotecan in stage II/III colon cancer. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded tissue microarrays were obtained from an adjuvant colon cancer trial (PETACC3) where patients were randomized to 5-fluorouracil/folinic acid with or without additional irinotecan.TOP1copy number status was analyzed by fluorescencein situhybridization (FISH) using aTOP1/CEN20 dual-probe combination.TOP1mRNA data were available from previous analyses. RESULTS: TOP1FISH and follow-up data were obtained from 534 patients.TOP1gain was identified in 27% using a single-probe enumeration strategy (≥4TOP1signals per cell) and in 31% when defined by aTOP1/CEN20 ratio ≥ 1.5. The effect of additional irinotecan was not dependent onTOP1FISH status.TOP1mRNA data were available from 580 patients with stage III disease. Benefit of irinotecan was restricted to patients characterized byTOP1mRNA expression ≥ third quartile (RFS: HRadjusted, 0.59;P= 0.09; OS: HRadjusted, 0.44;P= 0.03). The treatment byTOP1mRNA interaction was not statistically significant, but in exploratory multivariable fractional polynomial interaction analysis, increasingTOP1mRNA values appeared to be associated with increasing benefit of irinotecan. CONCLUSIONS: In contrast to theTOP1copy number, a trend was demonstrated for a predictive property ofTOP1mRNA expression. On the basis ofTOP1mRNA, it might be possible to identify a subgroup of patients where an irinotecan doublet is a clinically relevant option in the adjuvant setting of colon cancer.Clin Cancer Res; 22(7); 1621-31. ©2015 AACR

    Blue spectra and induced formation of primordial black holes

    Get PDF
    We investigate the statistical properties of primordial black hole (PBH) formation in the very early Universe. We show that the high level of inhomogeneity of the early Universe leads to the formation of the first generation PBHs. %The existence of these PBHs This causes later the appearance of a dust-like phase of the cosmological expansion. We discuss here a new mechanism for the second generation of PBH formation during the dust-like phase. This mechanism is based on the coagulation process. We demonstrate that the blue power spectrum of initial adiabatic perturbations after inflation leads to overproduction of primordial black holes with 10910^9gM1015\le M\le10^{15}g if the power index is n1.2n\ge1.2.Comment: 16 pages, 2 figure

    Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse

    Get PDF
    The mass function of primordial black holes created through the near-critical gravitational collapse is calculated in a manner fairly independent of the statistical distribution of underlying density fluctuation, assuming that it has a sharp peak on a specific scale. Comparing it with various cosmological constraints on their mass spectrum, some newly excluded range is found in the volume fraction of the region collapsing into black holes as a function of the horizon mass.Comment: 9 pages. Typos corrected. To appear in Physical Review

    Recommendations for a practical implementation of circulating tumor DNA mutation testing in metastatic non-small-cell lung cancer

    Get PDF
    BACKGROUND: Liquid biopsy (LB) is a rapidly evolving diagnostic tool for precision oncology that has recently found its way into routine practice as an adjunct to tissue biopsy (TB). The concept of LB refers to any tumor-derived material, such as circulating tumor DNA (ctDNA) or circulating tumor cells that are detectable in blood. An LB is not limited to the blood and may include other fluids such as cerebrospinal fluid, pleural effusion, and urine, among others. PATIENTS AND METHODS: The objective of this paper, devised by international experts from various disciplines, is to review current challenges as well as state-of-the-art applications of ctDNA mutation testing in metastatic non-small-cell lung cancer (NSCLC). We consider pragmatic scenarios for the use of ctDNA from blood plasma to identify actionable targets for therapy selection in NSCLCs. RESULTS: Clinical scenarios where ctDNA mutation testing may be implemented in clinical practice include complementary tissue and LB testing to provide the full picture of patients’ actual predictive profiles to identify resistance mechanism (i.e. secondary mutations), and ctDNA mutation testing to assist when a patient has a discordant clinical history and is suspected of showing intertumor or intratumor heterogeneity. ctDNA mutation testing may provide interesting insights into possible targets that may have been missed on the TB. Complementary ctDNA LB testing also provides an option if the tumor location is hard to biopsy or if an insufficient sample was taken. These clinical use cases highlight practical scenarios where ctDNA LB may be considered as a complementary tool to TB analysis. CONCLUSIONS: Proper implementation of ctDNA LB testing in routine clinical practice is envisioned in the near future. As the clinical evidence of utility expands, the use of LB alongside tissue sample analysis may occur in the patient cases detailed here

    Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair

    Get PDF
    We investigated radiation-induced defects in neutron-irradiated and subsequently annealed 6H-silicon carbide (SiC) with electron paramagnetic resonance (EPR), the magnetic circular dichroism of the absorption (MCDA), and MCDA-detected EPR (MCDA-EPR). In samples annealed beyond the annealing temperature of the isolated silicon vacancy we observed photoinduced EPR spectra of spin S=1 centers that occur in orientations expected for nearest neighbor pair defects. EPR spectra of the defect on the three inequivalent lattice sites were resolved and attributed to optical transitions between photon energies of 999 and 1075 meV by MCDA-EPR. The resolved hyperfine structure indicates the presence of one single carbon nucleus and several silicon ligand nuclei. These experimental findings are interpreted with help of total energy and spin density data obtained from the standard local-spin density approximation of the density-functional theory, using relaxed defect geometries obtained from the self-consistent charge density-functional theory based tight binding scheme. We have checked several defect models of which only the photoexcited spin triplet state of the carbon antisite–carbon vacancy pair (CSi-VC) in the doubly positive charge state can explain all experimental findings. We propose that the (CSi-VC) defect is formed from the isolated silicon vacancy as an annealing product by the movement of a carbon neighbor into the vacancy

    Supersymmetry and primordial black hole abundance constraints

    Get PDF
    We study the consequences of supersymmetry for primordial black hole (PBH) abundance constraints. PBHs with mass less than about 10^{11}g will emit supersymmetric particles when they evaporate. In most models of supersymmetry the lightest of these particles, the lightest supersymmetric particle (LSP), is stable and will hence survive to the present day. We calculate the limit on the initial abundance of PBHs from the requirement that the present day LSP density is less than the critical density. We apply this limit, along with those previously obtained from the effects of PBH evaporation on nucleosynthesis and the present day density of PBHs, to PBHs formed from the collpase of inflationary density perturbations, in the context of supersymmetric inflation models. If the reheat temperature after inflation is low, so as to avoid the overproduction of gravitinos and moduli, then the lightest PBHs which are produced in significant numbers will be evaporating around the present day and there are therefore no constraints from the effects of the evaporation products on nucleosynthesis or from the production of LSPs. We then examine models with a high reheat temperature and a subsequent period of thermal inflation. In these models avoiding the overproduction of LSPs limits the abundance of low mass PBHs which were previously unconstrained. Throughout we incorporate the production, at fixed time, of PBHs with a range of masses, which occurs when critical collapse is taken into account.Comment: 8 pages RevTeX file with 3 figures incorporated (uses RevTeX and epsf). Version to appear in Phys. Rev. D: minor change to calculation and added discussio
    corecore