177 research outputs found

    Three-dimensional reconstructions of intrahepatic bile duct tubulogenesis in human liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During liver development, intrahepatic bile ducts are thought to arise by a unique asymmetric mode of cholangiocyte tubulogenesis characterized by a series of remodeling stages. Moreover, in liver diseases, cells lining the Canals of Hering can proliferate and generate new hepatic tissue. The aim of this study was to develop protocols for three-dimensional visualization of protein expression, hepatic portal structures and human hepatic cholangiocyte tubulogenesis.</p> <p>Results</p> <p>Protocols were developed to digitally visualize portal vessel branching and protein expression of hepatic cell lineage and extracellular matrix deposition markers in three dimensions. Samples from human prenatal livers ranging from 7 weeks + 2 days to 15½ weeks post conception as well as adult normal and acetaminophen intoxicated liver were used. The markers included cytokeratins (CK) 7 and 19, the epithelial cell adhesion molecule (EpCAM), hepatocyte paraffin 1 (HepPar1), sex determining region Y (SRY)-box 9 (SOX9), laminin, nestin, and aquaporin 1 (AQP1).</p> <p>Digital three-dimensional reconstructions using CK19 as a single marker protein disclosed a fine network of CK19 positive cells in the biliary tree in normal liver and in the extensive ductular reactions originating from intrahepatic bile ducts and branching into the parenchyma of the acetaminophen intoxicated liver. In the developing human liver, three-dimensional reconstructions using multiple marker proteins confirmed that the human intrahepatic biliary tree forms through several developmental stages involving an initial transition of primitive hepatocytes into cholangiocytes shaping the ductal plate followed by a process of maturation and remodeling where the intrahepatic biliary tree develops through an asymmetrical form of cholangiocyte tubulogenesis.</p> <p>Conclusions</p> <p>The developed protocols provide a novel and sophisticated three-dimensional visualization of vessels and protein expression in human liver during development and disease.</p

    Dynamic Contrast-Enhanced Ultrasound of Colorectal Liver Metastases as an Imaging Modality for Early Response Prediction to Chemotherapy

    Get PDF
    Our aim was to investigate whether dynamic contrast-enhanced ultrasound (DCE-US) can detect early changes in perfusion of colorectal liver metastases after initiation of chemotherapy. Newly diagnosed patients with colorectal cancer with liver metastases were enrolled in this explorative prospective study. Patients were treated with capecitabine or 5-fluorouracil-based chemotherapy with or without bevacizumab. DCE-US was performed before therapy (baseline) and again 10 days after initiation of treatment. Change in contrast-enhancement in one liver metastasis (indicator lesion) was measured. Treatment response was evaluated with a computed tomography (CT) scan after three cycles of treatment and the initially observed DCE-US change of the indicator lesion was related to the observed CT response. Eighteen patients were included. Six did not complete three series of chemotherapy and the evaluation CT scan, leaving twelve patients for analysis. Early changes in perfusion parameters using DCE-US did not correlate well with subsequent CT changes. A subgroup analysis of eight patients receiving bevacizumab, however, demonstrated a statistically significant correlation (p = 0.045) between early changes in perfusion measures of peak enhancement at DCE-US and tumor shrinkage at CT scan. The study indicates that early changes in DCE-US perfusion measures may predict subsequent treatment response of colorectal liver metastases in patients receiving bevacizumab

    MMP Mediated Degradation of Type VI Collagen Is Highly Associated with Liver Fibrosis - Identification and Validation of a Novel Biochemical Marker Assay

    Get PDF
    Background and Aims: During fibrogenesis, in which excessive remodeling of the extracellular matrix occurs, both the quantity of type VI collagen and levels of matrix metalloproteinases, including MMP-2 and MMP-9, increase significantly. Proteolytic degradation of type VI collagen into small fragments, so-called neo-epitopes, may be specific biochemical marker of liver fibrosis. The aim of this study was to develop an ELISA detecting a fragment of type VI collagen generated by MMP-2 and MMP-9, and evaluate this assay in two preclinical models of liver fibrosis. Methods: Mass spectrometric analysis of cleaved type VI collagen revealed a large number of protease-generated neo-epitopes. A fragment unique to type VI collagen generated by MMP-2 and MMP-9 was selected for ELISA development. The CO6-MMP assay was evaluated in two rat models of liver fibrosis: bile duct ligation (BDL) and carbon tetrachloride (CCl4)-treated rats. Results: Intra-and inter-assay variation was 4.1% and 10.1% respectively. CO6-MMP levels were significantly elevated in CCl4-treated rats compared to vehicle-treated rats at weeks 12 (mean 30.9 ng/mL vs. 12.8 ng/mL, p = 0.002); week 16 (mean 34.0 ng/mL vs. 13.7 ng/mL, p = 0.0018); and week 20 (mean 35.3 ng/mL vs. 13.3 ng/mL, p = 0.0033) with a tight correlation between hepatic collagen content and serum levels of CO6-MMP (R-2 = 0.58,

    Digitalisering af undervisningen i almen patologi

    Get PDF
    Patologi er læren om sygdommes manifestationer i væv og celler, herunder sygdommes årsager og mekanismer, og er en central del af undervisningen på en lang række studier om menneskers og dyrs sygdomme. Imod slutningen af 00’erne kom de første præparatscannere til Danmark, og for faget almen patologi på Københavns Universitet blev dette udnyttet til at forbedre og modernisere undervisningen. Faget baserer nu sin undervisning på digitalisering og anvendelse af digitale medier, og både undervisning og eksamen i vævs- og celleforandringer foregår nu med digitale hjælpemidler. I løbet af de sidste fem år er alle vævspræparater digitaliserede, og sideløbende hermed er den elektroniske platform for faget blevet udbygget. Fagets egne forelæsninger videooptages og streames, forelæsninger udført af internationalt anerkendte undervisere på udenlandske universiteter transmitteres live, og en patologi-blog øger studerendes adgang til underviserne. Til selvstudium udvikles multiple choice-tests baseret på mikroskopipræparater samt korte filmklip, der gennemgår mikroskopiforandringerne. Digitale spørgeskemaer har vist, at disse tiltag har forbedret undervisningen og øget studentertilfredsheden ganske betydeligt. Denne oversigtsartikel vil præsentere de digitale tiltag og deres betydning for undervisningen i patologi på Københavns Universitet

    Histopathological Growth Pattern, Proteolysis and Angiogenesis in Chemonaive Patients Resected for Multiple Colorectal Liver Metastases

    Get PDF
    The purpose of this study was to characterise growth patterns, proteolysis, and angiogenesis in colorectal liver metastases from chemonaive patients with multiple liver metastases. Twenty-four patients were included in the study, resected for a median of 2.6 metastases. The growth pattern distribution was 25.8% desmoplastic, 33.9% pushing, and 21% replacement. In 20 patients, identical growth patterns were detected in all metastases, but in 8 of these patients, a second growth pattern was also present in one or two of the metastases. In the remaining 4 patients, no general growth pattern was observed, although none of the liver metastases included more than two growth patterns. Overall, a mixed growth pattern was demonstrated in 19.3% of the liver metastases. Compared to metastases with pushing, those with desmoplastic growth pattern had a significantly up-regulated expression of urokinase-type plasminogen activator receptor (P=0.0008). Angiogenesis was most pronounced in metastases with a pushing growth pattern in comparison to those with desmoplastic (P=0.0007) and replacement growth pattern (P=0.021). Although a minor fraction of the patients harboured metastases with different growth patterns, we observed a tendency toward growth pattern uniformity in the liver metastases arising in the same patient. The result suggests that the growth pattern of liver metastases is not a random phenomenon

    Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens by proteases produces small fragments, so-called neoepitopes, which are released systemically. Technologies investigating MMP-generated fragments of collagens may provide more useful information than traditional serological assays that crudely measure total protein. In the present study, we developed an ELISA for the quantification of a neoepitope generated by MMP degradation of type IV collagen and evaluated the association of this neoepitope with liver fibrosis in two animal models.</p> <p>Methods</p> <p>Type IV collagen was degraded <it>in vitro </it>by a variety of proteases. Mass spectrometric analysis revealed more than 200 different degradation fragments. A specific peptide sequence, 1438'GTPSVDHGFL'1447 (CO4-MMP), in the α1 chain of type IV collagen generated by MMP-9 was selected for ELISA development. ELISA was used to determine serum levels of the CO4-MMP neoepitope in two rat models of liver fibrosis: inhalation of carbon tetrachloride (CCl<sub>4</sub>) and bile duct ligation (BDL). The levels were correlated to histological findings using Sirius red staining.</p> <p>Results</p> <p>A technically robust assay was produced that is specific to the type IV degradation fragment, GTPSVDHGFL. CO4-MMP serum levels increased significantly in all BDL groups compared to baseline, with a maximum increase of 248% seen two weeks after BDL. There were no changes in CO4-MMP levels in sham-operated rats. In the CCl<sub>4 </sub>model, levels of CO4-MMP were significantly elevated at weeks 12, 16 and 20 compared to baseline levels, with a maximum increase of 88% after 20 weeks. CO4-MMP levels correlated to Sirius red staining results.</p> <p>Conclusion</p> <p>This ELISA is the first assay developed for assessment of proteolytic degraded type IV collagen, which, by enabling quantification of basement membrane degradation, could be relevant in investigating various fibrogenic pathologies. The CO4-MMP degradation fragment was highly associated with liver fibrosis in the two animal models studied.</p
    corecore