67 research outputs found

    Lightweight Carbon Fiber Mirrors for Solar Concentrator Applications

    Get PDF
    Lightweight parabolic mirrors for solar concentrators have been fabricated using carbon fiber reinforced polymer (CFRP) and a nanometer scale optical surface smoothing technique. The smoothing technique improved the surface roughness of the CFRP surface from ~3 {\mu}m root mean square (RMS) for as-cast to ~5 nm RMS after smoothing. The surfaces were then coated with metal, which retained the sub-wavelength surface roughness, to produce a high-quality specular reflector. The mirrors were tested in an 11x geometrical concentrator configuration and achieved an optical efficiency of 78% under an AM0 solar simulator. With further development, lightweight CFRP mirrors will enable dramatic improvements in the specific power, power per unit mass, achievable for concentrated photovoltaics in space.Comment: IEEE Photovoltaic Specialist Conference (PVSC), DC, USA, 201

    Extremely broadband ultralight thermally emissive metasurfaces

    Get PDF
    We report the design, fabrication and characterization of ultralight highly emissive metaphotonic structures with record-low mass/area that emit thermal radiation efficiently over a broad spectral (2 to 35 microns) and angular (0-60 degrees) range. The structures comprise one to three pairs of alternating nanometer-scale metallic and dielectric layers, and have measured effective 300 K hemispherical emissivities of 0.7 to 0.9. To our knowledge, these structures, which are all subwavelength in thickness are the lightest reported metasurfaces with comparable infrared emissivity. The superior optical properties, together with their mechanical flexibility, low outgassing, and low areal mass, suggest that these metasurfaces are candidates for thermal management in applications demanding of ultralight flexible structures, including aerospace applications, ultralight photovoltaics, lightweight flexible electronics, and textiles for thermal insulation

    Extremely broadband ultralight thermally emissive metasurfaces

    Get PDF
    We report the design, fabrication and characterization of ultralight highly emissive metaphotonic structures with record-low mass/area that emit thermal radiation efficiently over a broad spectral (2 to 35 microns) and angular (0–60°) range. The structures comprise one to three pairs of alternating nanometer-scale metallic and dielectric layers, and have measured effective 300 K hemispherical emissivities of 0.7 to 0.9. To our knowledge, these structures, which are all subwavelength in thickness are the lightest reported metasurfaces with comparable infrared emissivity. The superior optical properties, together with their mechanical flexibility, low outgassing, and low areal mass, suggest that these metasurfaces are candidates for thermal management in applications demanding of ultralight flexible structures, including aerospace applications, ultralight photovoltaics, lightweight flexible electronics, and textiles for thermal insulation

    A lightweight tile structure integrating photovoltaic conversion and RF power transfer for space solar power applications

    Get PDF
    We demonstrate the development of a prototype lightweight (1.5 kg/m^3) tile structure capable of photovoltaic solar power capture, conversion to radio frequency power, and transmission through antennas. This modular tile can be repeated over an arbitrary area to forma large aperture which could be placed in orbit to collect sunlight and transmit electricity to any location. Prototype design is described and validated through finite element analysis, and high-precision ultra-light component manufacture and robust assembly are described

    A lightweight tile structure integrating photovoltaic conversion and RF power transfer for space solar power applications

    Get PDF
    We demonstrate the development of a prototype lightweight (1.5 kg/m^3) tile structure capable of photovoltaic solar power capture, conversion to radio frequency power, and transmission through antennas. This modular tile can be repeated over an arbitrary area to forma large aperture which could be placed in orbit to collect sunlight and transmit electricity to any location. Prototype design is described and validated through finite element analysis, and high-precision ultra-light component manufacture and robust assembly are described

    Lightweight Carbon Fiber Mirrors for Solar Concentrator Applications

    Get PDF
    Lightweight parabolic mirrors for solar concentrators have been fabricated using carbon fiber reinforced polymer (CFRP) and a nanometer scale optical surface smoothing technique. The smoothing technique improved the surface roughness of the CFRP surface from ~3 μm root mean square (RMS) for as-cast to ~5 nm RMS after smoothing. The surfaces were then coated with metal, which retained the sub-wavelength surface roughness, to produce a high-quality specular reflector. The mirrors were tested in an 11x geometrical concentrator configuration and achieved an optical efficiency of 78% under an AM0 solar simulator. With further development, lightweight CFRP mirrors will enable dramatic improvements in the specific power, power per unit mass, achievable for concentrated photovoltaics in space

    Extremely broadband ultralight thermally-emissive optical coatings

    Get PDF
    We report the design, fabrication, and characterization of ultralight highly emissive structures with a record-low mass per area that emit thermal radiation efficiently over a broad spectral (2 to 30 microns) and angular (0–60°) range. The structures comprise one to three pairs of alternating metallic and dielectric thin films and have measured effective 300 K hemispherical emissivity of 0.7 to 0.9 (inferred from angular measurements which cover a bandwidth corresponding to 88% of 300K blackbody power). To our knowledge, these micron-scale-thickness structures, are the lightest reported optical coatings with comparable infrared emissivity. The superior optical properties, together with their mechanical flexibility, low outgassing, and low areal mass, suggest that these coatings are candidates for thermal management in applications demanding of ultralight flexible structures, including aerospace applications, ultralight photovoltaics, lightweight flexible electronics, and textiles for thermal insulation

    A flexible phased array system with low areal mass density

    Get PDF
    Phased arrays are multiple antenna systems capable of forming and steering beams electronically using constructive and destructive interference between sources. They are employed extensively in radar and communication systems but are typically rigid, bulky and heavy, which limits their use in compact or portable devices and systems. Here, we report a scalable phased array system that is both lightweight and flexible. The array architecture consists of a self-monitoring complementary metal–oxide–semiconductor-based integrated circuit, which is responsible for generating multiple independent phase- and amplitude-controlled signal channels, combined with flexible and collapsible radiating structures. The modular platform, which can be collapsed, rolled and folded, is capable of operating standalone or as a subarray in a larger-scale flexible phased array system. To illustrate the capabilities of the approach, we created a 4 × 4 flexible phased array tile operating at 9.4–10.4 GHz, with a low areal mass density of 0.1 g cm^(−2). We also created a flexible phased array prototype that is powered by photovoltaic cells and intended for use in a wireless space-based solar power transfer array

    Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    Get PDF
    Tetrahymena ATP synthase, an evolutionarily divergent protein complex, has a very unusual structure and protein composition including a unique Fo subunit a and at least 13 proteins with no orthologs outside of the ciliate lineage
    • …
    corecore