10 research outputs found

    Microfluidic Mechanics and Applications: a Review

    Get PDF
    Microfluidics involves the transportation, splitting and mixing of minute fluids to perform several chemical and biological reactions including drug screening, heating, cooling or dissolution of reagents. Efforts have been made to develop different microfluidic devices, droplets and valves that can stop and resume flow of liquids inside a microchannel. This paper provides the review related to the theory and mechanics of microfluidic devices and fluid flow. Different materials and techniques for fabricating microfluidic devices are discussed. Subsequently, the microfluidic components that are responsible for successful micrfluidic device formation are presented. Finally, recent applications related to the microfluidics are highlighted. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3553

    HeartBEiT: Vision Transformer for Electrocardiogram Data Improves Diagnostic Performance at Low Sample Sizes

    Full text link
    The electrocardiogram (ECG) is a ubiquitous diagnostic modality. Convolutional neural networks (CNNs) applied towards ECG analysis require large sample sizes, and transfer learning approaches result in suboptimal performance when pre-training is done on natural images. We leveraged masked image modeling to create the first vision-based transformer model, HeartBEiT, for electrocardiogram waveform analysis. We pre-trained this model on 8.5 million ECGs and then compared performance vs. standard CNN architectures for diagnosis of hypertrophic cardiomyopathy, low left ventricular ejection fraction and ST elevation myocardial infarction using differing training sample sizes and independent validation datasets. We show that HeartBEiT has significantly higher performance at lower sample sizes compared to other models. Finally, we also show that HeartBEiT improves explainability of diagnosis by highlighting biologically relevant regions of the EKG vs. standard CNNs. Thus, we present the first vision-based waveform transformer that can be used to develop specialized models for ECG analysis especially at low sample sizes

    Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments

    No full text
    Abstract The United States Medical Licensing Examination (USMLE) has been a subject of performance study for artificial intelligence (AI) models. However, their performance on questions involving USMLE soft skills remains unexplored. This study aimed to evaluate ChatGPT and GPT-4 on USMLE questions involving communication skills, ethics, empathy, and professionalism. We used 80 USMLE-style questions involving soft skills, taken from the USMLE website and the AMBOSS question bank. A follow-up query was used to assess the models’ consistency. The performance of the AI models was compared to that of previous AMBOSS users. GPT-4 outperformed ChatGPT, correctly answering 90% compared to ChatGPT’s 62.5%. GPT-4 showed more confidence, not revising any responses, while ChatGPT modified its original answers 82.5% of the time. The performance of GPT-4 was higher than that of AMBOSS's past users. Both AI models, notably GPT-4, showed capacity for empathy, indicating AI's potential to meet the complex interpersonal, ethical, and professional demands intrinsic to the practice of medicine

    Promoting patient safety in India: situational analysis and the way forward

    No full text
    Unsafe healthcare is a well-recognized issue internationally and is attracting attention in India as well. Drawing upon the various efforts that have been made to address this issue in India and abroad, we explore how we can accelerate developments and build a culture of patient safety in the Indian health sector. Using five international case studies, we describe experiences of promoting patient safety in various ways to inform future developments in India. We offer a roadmap for 2020, which contains suggestions on how India could build a culture of patient safety

    Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children.

    No full text
    Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C
    corecore