55 research outputs found
Tissue Reaction and Biocompatibility of Implanted Mineral Trioxide Aggregate with Silver Nanoparticles in a Rat Model
Introduction: Biocompatibility and antimicrobial activity of endodontic materials are of utmost importance. Considering the extensive applications of mineral trioxide aggregate (MTA) in dentistry and antimicrobial properties of silver nanoparticles, this study aimed to evaluate the subcutaneous inflammatory reaction of rat connective tissues to white MTA with and without nanosilver (NS) particles. Methods and Materials: Polyethylene tubes (1.1Ă—8 mm) containing experimental materials (MTA and MTA+NS and empty control tubes) were implanted in subcutaneous tissues of seventy-five male rats. Animals were divided into five groups (n=15) according to the time of evaluation: group 1; after 7 days, group 2; after 15 days, group 3; after 30 days, group 4; after 60 days and group 5; after 90 days. The inflammatory reaction was graded and data was analyzed using the Kruskal-Wallis and Mann-Whitney U tests. Statistical significance was defined at 0.05. Results: Comparison of cumulative inflammatory reaction at all intervals revealed that the mean grade of inflammatory reaction to MTA, MTA+NS and control samples were 3, 2 and 2, respectively. According to the Mann-Whitney analysis there were no significant differences between MTA+NS and MTA (P=0.42). Conclusion: Incorporation of 1% nanosilver to MTA does not affect the inflammatory reaction of subcutaneous tissue in rat models.Keywords: Biocompatibility; Mineral Trioxide Aggregate; Nanosilver; Silver Nanoparticl
Antimicrobial Efficacy of Mineral Trioxide Aggregate with and without Silver Nanoparticles
Introduction: Most current root-end filling materials do not provide a perfect seal. Thus, a microscopic space is likely to exist in the interface between walls of the root-end cavity and filling material, which allows microorganisms and their products to penetrate. In addition to good sealing ability and biocompatibility, root-end filling materials should ideally have some antimicrobial activity. Therefore, this in vitro study aimed to evaluate the antimicrobial properties of Angelus white mineral trioxide aggregate (MTA) and the mixture of MTA with silver nanoparticles (1% weight; MTA/SN). Materials and Methods: Antimicrobial properties of MTA and MTA/SN were tested by agar diffusion technique against Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. The microbial inhibition zones around the materials were measured by a caliper with 0.1-mm accuracy. Student’s t-test was used for comparison between the two groups in normal data distribution and Man-Whitney U test for non-normal distribution. Results: Student’s t-test revealed that for E. faecalis, C. albicans, and P. aeruginosa, microbial inhibition zone of MTA/SN was significantly greater than that of MTA (P=0.000). Mann-Whitney U test indicated no significant difference between the effect of MTA and MTA/SN on S. aureus (P>0.05). Conclusion: Based on the results of this study, adding silver nanoparticles to MTA improved its antimicrobial efficacy
New Simulated Plasma for Assessing Solubility of Mineral Trioxide Aggregate
Introduction:Solubility of mineral trioxide aggregate (MTA) is an important characteristic that affects other properties such as microleakage and biocompatibility. Distilled water (DW) has previously been used for solubility tests. This experimental study compared the solubility of MTA in DW, synthetic tissue fluid (STF) and new simulated plasma (SP). Methods and Materials: In this study, 36 samples of tooth-colored ProRoot MTA were prepared and divided into three groups (n=12) to be immersed in three different solutions (DW, STF, and SP). Solubility tests were conducted at 2, 5, 9, 14, 21, 30, 50, and 78-day intervals. The unequal variance F-test (Welch test) was utilized to determine the effect of solubility media and Games-Howell analysis was used for pairwise comparisons. The repeated-measures ANOVA was used to assess the importance of immersion duration. Results: Welch test showed significant differences in solubility rates of samples between all the different solubility media at all the study intervals (P<0.05) except for the 14-day interval (P=0.094). The mixed repeated-measures ANOVA revealed a significant difference in solubility rate of MTA in three different solutions at all time-intervals (P=0.000). Games-Howell post-hoc test revealed that all pairwise comparisons were statistically significant at all time-intervals (P=0.000). Conclusion: Based on the findings of this study, the long-term solubility of MTA in simulated plasma was less than that in synthetic tissue fluid and distilled water
A Review of Antibacterial Agents in Endodontic Treatment
Microorganisms play a major role in initiation and perpetuation of pulpal and periapical diseases. Therefore, elimination of the microorganisms present in the root canal system is the fundamental objective of endodontic treatment. The use of mechanical debridement, chemical irrigation or other antimicrobial protocols and intra-canal medicaments are critical to attain this goal. The aim of this article was to review the antimicrobial agents and their properties in endodontics
Synergistic effects of Ferula gummosa and radiotherapy on induction of cytotoxicity in HeLa cell line
Objective: Cervical cancer is the second most common type of cancer among women, worldwide; and for treatment of this type of cancer radiotherapy is commonly used. Ferula gummosa Boiss(“Barije” in Persian, from the family Apiaceae), (F. gummosa), is an extremely precious medicinal plant which naturally grows throughout the Mediterranean and Central Asia and is a native plant in Iran. The present study examined the cytotoxic effects of F. gummosa in terms of induction of apoptosis and radiosensitivity in HeLa cells. Materials and Methods: In order to determine F. gummosa cytotoxicity in HeLa cells, the cells were incubated with different concentrations of the plant resin(0-1000 µg/ml) for 24, 48 and 72 hr. Cytotoxicity was determined by MTT assay. The role of apoptosis in F. gummosa cytotoxicity was investigated using flow cytometry following propidium iodide (PI) staining of DNA. For radiosensitivity assessment, F. gummosa-treated cells were exposed to 2 Gy γ-rays, and cytotoxicity was determined in irradiated and non-irradiated (control) groups by MTT and the synergism factor was calculated. Results: F. gummosa decreased cell viability in HeLa cells in a concentration- and time-dependent manner. Flow cytometryanalysisindicated that apoptosis is involved in F. gummosa-induced cytotoxicity. Co-administration of F. gummosa and radiotherapy, showed that this plantat non-toxic low doses, could result in almost 5-fold increment in sensitization of cells towards radiation-induced toxicity. Conclusion: The concurrent use of F. gummosa and radiation increases radiosensitivity and cell death. Therefore, F. gummosa can be considered as a potential radiosensitizer agent against cervical cancer
- …