3 research outputs found

    Log-periodic and Kanai-Caldirola oscillators

    No full text
    Nesse trabalho apresentamos as soluÃÃes clÃssicas e quÃnticas de duas classes de osciladores harmÃnicos dependentes de tempo, a saber: (a) o oscilador log-periÃdico e (b) o oscilador tipo Caldirola-Kanai. Para a classe (a) estudamos os seguintes osciladores: (I) m(t)=m0fractt0m(t)=m_0frac{t}{t_0}, (II) m(t)=m0m(t)=m_0 e (III) m(t)=m0ajustfractt02m(t)=m_0ajust{frac{t}{t_0}}^2. Nesses trÃs casos omega(t)=omega0fract0tomega(t)=omega_0frac{t_0}{t}. Para a classe (b) estudamos o oscilador (IV) de Caldirola-Kanai onde omega(t)=omega0omega(t)=omega_0 e m(t)=m0extExpajustgammatm(t)=m_0 ext{Exp}ajust{gamma t} e osciladores com omega(t)=omega0omega(t)=omega_0 e m(t)=m0ajust1+fractt0alpham(t)=m_0ajust{1+frac{t}{t_0}}^alpha, para (V) alpha=2alpha=2 e (VI) alpha=4alpha=4. Para obter as soluÃÃes clÃssicas de cada oscilador resolvemos suas respectivas equaÃÃes de movimento e analisamos o comportamento de q(t)q(t), p(t)p(t) assim como do diagrama de fase q(t)q(t) vs p(t)p(t). Para obter as soluÃÃes quÃnticas usamos uma transformaÃÃo unitÃria e o mÃtodo dos invariantes quÃnticos de Lewis e Riesenfeld. A funÃÃo de onda obtida à escrita em termos de uma funÃÃo ho ho, que à soluÃÃo da equaÃÃo de Milne-Pinney. Ainda, para cada sistema resolvemos a respectiva equaÃÃo de Milne-Pinney e discutimos como o produto da incerteza evolui no tempo.In this work we present the classical and quantum solutions of two classes of time-dependent harmonic oscillators, namely: (a) the log-periodic and (b) the Caldirola-Kanai-type oscillators. For class (a) we study the following oscillators: (I) m(t)=m0fractt0m(t)=m_0frac{t}{t_0}, (II) m(t)=m0m(t)=m_0 and (III) m(t)=m0ajustfractt02m(t)=m_0ajust{frac{t}{t_0}}^2. In all three cases omega(t)=omega0fract0tomega(t)=omega_0frac{t_0}{t}. For class (b) we study the Caldirola-Kanai oscillator (IV)where omega(t)=omega0omega(t)=omega_0 and m(t)=m0extexpajustgammatm(t)=m_0 ext{exp}ajust{gamma t} and the oscillator with omega(t)=omega0omega(t)=omega_0 and m(t)=m0ajust1+fractt0alpham(t)=m_0ajust{1+frac{t}{t_0}}^alpha, for alpha=2alpha=2 (V) and alpha=4alpha=4 (VI). To obtain the classical solution for each oscillator we solve the respective equation of motion and analyze the behavior of q(t)q(t), p(t)p(t) as well as the phase diagram q(t)q(t) vs p(t)p(t). To obtain the quantum solutions we use a unitary transformation and the Lewis and Riesenfeld quantum invariant method. The wave functions obtained are written in terms of a function (ho ho) which is solution of the Milne-Pinney equation. Futhermore, for each system we solve the respective Milne-Pinney equation and discuss how the uncertainty product evolves with time

    Direct observation of Josephson vortex cores

    No full text
    International audienceSuperconducting correlations may propagate between two superconductors separated by a tiny insulating or metallic barrier, allowing a dissipationless electric current to flow(1,2). In the presence of a magnetic field, the maximum supercurrent oscillates(3) and each oscillation corresponding to the entry of one Josephson vortex into the barrier(4). Josephson vortices are conceptual blocks of advanced quantum devices such as coherent terahertz generators(5) or qubits for quantum computing(6), in which on-demand generation and control is crucial. Here, we map superconducting correlations inside proximity Josephson junctions(7) using scanning tunnelling microscopy. Unexpectedly, we find that such Josephson vortices have real cores, in which the proximity gap is locally suppressed and the normal state recovered. By following the Josephson vortex formation and evolution we demonstrate that they originate from quantum interference of Andreev quasiparticles(8), and that the phase portraits of the two superconducting quantum condensates at edges of the junction decide their generation, shape, spatial extent and arrangement. Our observation opens a pathway towards the generation and control of Josephson vortices by applying supercurrents through the superconducting leads of the junctions, that is, by purely electrical means without any need for a magnetic field, which is a crucial step towards high-density on-chip integration of superconducting quantum devices
    corecore