7 research outputs found

    Singing voice separation: a study on training data

    Full text link
    In the recent years, singing voice separation systems showed increased performance due to the use of supervised training. The design of training datasets is known as a crucial factor in the performance of such systems. We investigate on how the characteristics of the training dataset impacts the separation performances of state-of-the-art singing voice separation algorithms. We show that the separation quality and diversity are two important and complementary assets of a good training dataset. We also provide insights on possible transforms to perform data augmentation for this task

    Eosinophilic granulomatosis with polyangiitis (Churg–Strauss) (EGPA) Consensus Task Force recommendations for evaluation and management

    Get PDF
    AbstractObjectiveTo develop disease-specific recommendations for the diagnosis and management of eosinophilic granulomatosis with polyangiitis (Churg–Strauss syndrome) (EGPA).MethodsThe EGPA Consensus Task Force experts comprised 8 pulmonologists, 6 internists, 4 rheumatologists, 3 nephrologists, 1 pathologist and 1 allergist from 5 European countries and the USA. Using a modified Delphi process, a list of 40 questions was elaborated by 2 members and sent to all participants prior to the meeting. Concurrently, an extensive literature search was undertaken with publications assigned with a level of evidence according to accepted criteria. Drafts of the recommendations were circulated for review to all members until final consensus was reached.ResultsTwenty-two recommendations concerning the diagnosis, initial evaluation, treatment and monitoring of EGPA patients were established. The relevant published information on EGPA, antineutrophil-cytoplasm antibody-associated vasculitides, hypereosinophilic syndromes and eosinophilic asthma supporting these recommendations was also reviewed.DiscussionThese recommendations aim to give physicians tools for effective and individual management of EGPA patients, and to provide guidance for further targeted research

    Work plan for improving the DARWIN2.3 depleted material balance calculation of nuclides of interest for the fuel cycle

    No full text
    DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle

    Implementations of Custom Sonar Instruments for Binary Gas Mixture and Flow Analysis in the ATLAS Experiment at the CERN LHC

    No full text
    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom microcontroller-based electronics, we have developed sonar instruments, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with sound velocity vs. molar composition look-up curves to obtain the binary mixture at a given temperature and pressure. The look-up curves may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instruments and their performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instruments can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required
    corecore