264 research outputs found

    On the "Universal" Quantum Area Spectrum

    Full text link
    There has been much debate over the form of the quantum area spectrum for a black hole horizon, with the evenly spaced conception of Bekenstein having featured prominently in the discourse. In this letter, we refine a very recently proposed method for calibrating the Bekenstein form of the spectrum. Our refined treatment predicts, as did its predecessor, a uniform spacing between adjacent spectral levels of 8π8\pi in Planck units; notably, an outcome that already has a pedigree as a proposed ``universal'' value for this intrinsically quantum-gravitational measure. Although the two approaches are somewhat similar in logic and quite agreeable in outcome, we argue that our version is conceptually more elegant and formally simpler than its precursor. Moreover, our rendition is able to circumvent a couple of previously unnoticed technical issues and, as an added bonus, translates to generic theories of gravity in a very direct manner.Comment: 7 Pages; (v2) now 9 full pages, significant changes to the text and material added but the general theme and conclusions are unchange

    Gravitational anomalies: a recipe for Hawking radiation

    Get PDF
    We explore the method of Robinson and Wilczek for deriving the Hawking temperature of a black hole. In this method, the Hawking radiation restores general covariance in an effective theory of near-horizon physics which otherwise exhibits a gravitational anomaly at the quantum level. The method has been shown to work for broad classes of black holes in arbitrary spacetime dimensions. These include static black holes, accreting or evaporating black holes, charged black holes, rotating black holes, and even black rings. In the case of charged and rotating black holes, the expected super-radiant current is also reproduced.Comment: 7 pages; This essay received an "Honorable Mention" in the 2007 Essay Competition of the Gravity Research Foundation; (v2) Short comments and references added; (v3) Minor revisions and updated references to agree with published versio

    Massive uncharged and charged particles' tunneling from the Horowitz-Strominger Dilaton black hole

    Get PDF
    Originally, Parikh and Wilczek's work is only suitable for the massless particles' tunneling. But their work has been further extended to the cases of massive uncharged and charged particles' tunneling recently. In this paper, as a particular black hole solution, we apply this extended method to reconsider the tunneling effect of the H.S Dilaton black hole. We investigate the behavior of both massive uncharged and charged particles, and respectively calculate the emission rate at the event horizon. Our result shows that their emission rates are also consistent with the unitary theory. Moreover, comparing with the case of massless particles' tunneling, we find that this conclusion is independent of the kind of particles. And it is probably caused by the underlying relationship between this method and the laws of black hole thermodynamics.Comment: 6 pages, no figure, revtex 4, accepted by Int. J. Mod. Phys

    Tunnelling, Temperature and Taub-NUT Black Holes

    Full text link
    We investigate quantum tunnelling methods for calculating black hole temperature, specifically the null geodesic method of Parikh and Wilczek and the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of these methods to a broad class of spacetimes with event horizons, inlcuding Rindler and non-static spacetimes such as Kerr-Newman and Taub-NUT. We obtain a general form for the temperature of Taub-NUT-Ads black holes that is commensurate with other methods. We examine the limitations of these methods for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a case in point.Comment: 22 pages, 3 figures; added references, fixed figures, added comments to extremal section, added footnot

    Hawking Radiation for Scalar and Dirac Fields in Five Dimensional Dilatonic Black Hole via Anomalies

    Full text link
    We study massive scalar fields and Dirac fields propagating in a five dimensional dilatonic black hole background. We expose that for both fields the physics can be describe by a two dimensional theory, near the horizon. Then, in this limit, by applying the covariant anomalies method we find the Hawking flux by restoring the gauge invariance and the general coordinate covariance, which coincides with the flux obtained from integrating the Planck distribution for fermions.Comment: 10 page

    On the energy of charged black holes in generalized dilaton-axion gravity

    Full text link
    In this paper we calculate the energy distribution of some charged black holes in generalized dilaton-axion gravity. The solutions correspond to charged black holes arising in a Kalb-Ramond-dilaton background and some existing non-rotating black hole solutions are recovered in special cases. We focus our study to asymptotically flat and asymptotically non-flat types of solutions and resort for this purpose to the M{\o}ller prescription. Various aspects of energy are also analyzed.Comment: LaTe

    Anomalies and Hawking radiation from the Reissner-Nordstr\"om black hole with a global monopole

    Full text link
    We extend the work by S. Iso, H. Umetsu and F. Wilczek [Phys. Rev. Lett. 96 (2006) 151302] to derive the Hawking flux via gauge and gravitational anomalies of a most general two-dimensional non-extremal black hole space-time with the determinant of its diagonal metric differing from the unity (−g≠1\sqrt{-g} \neq 1) and use it to investigate Hawking radiation from the Reissner-Nordstrom black hole with a global monopole by requiring the cancellation of anomalies at the horizon. It is shown that the compensating energy momentum and gauge fluxes required to cancel gravitational and gauge anomalies at the horizon are precisely equivalent to the (1+1)(1+1)-dimensional thermal fluxes associated with Hawking radiation emanating from the horizon at the Hawking temperature. These fluxes are universally determined by the value of anomalies at the horizon.Comment: 18 pages, 0 figure. 1 footnote and 4 new reference adde
    • 

    corecore