11 research outputs found

    Electron Weibel instability induced magnetic fields in optical-field ionized plasmas

    Full text link
    Generation and amplification of magnetic fields in plasmas is a long-standing topic that is of great interest to both plasma and space physics. The electron Weibel instability is a well-known mechanism responsible for self-generating magnetic fields in plasmas with temperature anisotropy and has been extensively investigated in both theory and simulations, yet experimental verification of this instability has been challenging. Recently, we demonstrated a new experimental platform that enables the controlled initialization of highly nonthermal and/or anisotropic plasma electron velocity distributions via optical-field ionization. Using an external electron probe bunch from a linear accelerator, the onset, saturation and decay of the self-generated magnetic fields due to electron Weibel instability were measured for the first time to our knowledge. In this paper, we will first present experimental results on time-resolved measurements of the Weibel magnetic fields in non-relativistic plasmas produced by Ti:Sapphire laser pulses (0.8 μm\mu m) and then discuss the feasibility of extending the study to quasi-relativistic regime by using intense CO2\rm CO_2 (e.g., 9.2 μm\mu m) lasers to produce much hotter plasmas.Comment: 22 pages, 10 figure

    Mapping the self-generated magnetic fields due to thermal Weibel instability

    Full text link
    Weibel-type instability can self-generate and amplify magnetic fields in both space and laboratory plasmas with temperature anisotropy. The electron Weibel instability has generally proven more challenging to measure than its ion counterpart owing to the much smaller inertia of electrons, resulting in a faster growth rate and smaller characteristic wavelength. Here, we have probed the evolution of the two-dimensional distribution of the magnetic field components and the current density due to electron Weibel instability, in CO2\rm CO_2-ionized hydrogen gas (plasma) with picosecond resolution using a relativistic electron beam. We find that the wavenumber spectra of the magnetic fields are initially broad but eventually shrink to a narrow spectrum representing the dominant quasi-single mode. The measured kk-resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to 1%\sim 1\% of the plasma thermal energy into magnetic energy.Comment: 24 pages, 4 figure

    Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    No full text
    International audiencePlasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV/m is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations

    Experimental Investigations of Beam Driven Plasma Wakefield Accelerators

    No full text
    A plasma wakefield accelerator (PWFA) uses a plasma wave (a wake) to accelerate electrons at a gradient that is three orders of magnitude higher than that of a conventional accelerator. When the plasma wave is driven by a high-density particle beam or a high-intensity laser pulse, it evolves into the nonlinear blowout regime, where the driver expels the background plasma electrons, resulting in an ion cavity forming behind the driver. This ion cavity has ideal properties for accelerating and focusing electrons. One method to insert electrons into this highly-relativistic, transient structure is by ionization injection. In this method, electrons resulting from further ionization of the ions inside the wake are trapped and accelerated by the wakefield. These injected electrons absorb the energy of the wake, resulting in a reduced accelerating field amplitude; this phenomenon is known as beam loading.This thesis discusses experiments that demonstrate how ionization injection can, on the one hand, lead to excessive beam loading and be a detriment to a PWFA, while on the other hand, it may be taken advantage of to produce bright electron beams that will be necessary for applications of a PWFA to a free electron laser (FEL) or a collider. These experiments were part of the FACET Campaign at the SLAC National Accelerator Laboratory and used FACET’s 3 nC, 20.35 GeV electron beam to field ionize the plasma source and drive a wake.In the first experiment, the plasma source was a 30 cm column of rubidium (Rb) vapor. The low ionization potential and high atomic mass of Rb made it a suitable candidate as a plasma source for a PWFA. However, the low ionization potential of the Rb+ ion resulted in continuous ionization of Rb+ and injection of electrons along the length of the plasma. This resulted in heavy beam-loading, which reduced the strength of the accelerating field by half, making the Rb source unusable for a PWFA.In the second experiment, the plasma source was a column of lithium (Li) vapor bound by cold helium (He) gas. Here, the ionization injection of He electrons in the 10 cm boundary region between Li and He led to localized beam loading and resulted in an accelerated electron beam with high energy (32 GeV), a 10% energy spread, and an emittance an order of magnitude smaller than the drive beam. Particle-in-cell simulations indicate that the beam loading can be further optimized by reducing the injection region even more, which can lead to bright, high-current, low-energy-spread electron beams

    High-Peak-Power Long-Wave Infrared Lasers with CO2 Amplifiers

    No full text
    Long-wave infrared (LWIR) picosecond pulses with multi-terawatt peak power have recently become available for advanced high-energy physics and material research. Multi-joule pulse energy is achieved in an LWIR laser system via amplification of a microjoule seed pulse with high-pressure, mixed-isotope CO2 amplifiers. A chirped-pulse amplification (CPA) scheme is employed in such a laser to reduce the nonlinear interaction between the optical field and the transmissive elements of the system. Presently, a research and development effort is underway towards an even higher LWIR peak power that is required, for instance, for promising particle acceleration schemes. The required boost of the peak power can be achieved by reducing the pulse duration to fractions of a picosecond. For this purpose, the possibility of reducing the gain narrowing in the laser amplifiers and post-compression techniques are being studied. Another direction in research is aimed at the increased throughput (i.e., repetition rate), efficiency, and reliability of LWIR laser systems. The transition from a traditional electric-discharge pumping to an optical pumping scheme for CO2 amplifiers is expected to improve the robustness of high-peak-power LWIR lasers, making them suitable for broad implementation in scientific laboratory, industrial, and clinical environments

    Measuring the Self-modulation Instability of Electron and Positron Bunches in Plasmas

    No full text
    The self-modulation instability (SMI) can be used to transform a long, charged particle bunch into a train of periodically spaced shorter bunches. The SMI occurs in a plasma when the plasma wake period is much shorter than the bunch length. The train of short bunches can then resonantly drive wakefields to much larger amplitude that the long bunch can. The SMI will be used in the AWAKE experiment at CERN, where the wakefields will be driven by a high-energy (400GeV) proton bunch. However, most of the SMI physics can be tested with the electron and positron bunches available at SLAC-FACET. In this case, the bunch is ~10 plasma wavelengths long, but can drive wakefields in the GV/m range. FACET has a meter-long plasma and is well equipped in terms of diagnostic for SMI detection: optical transition radiation for transverse bunch profile measurements, coherent transition radiation interferometry for radial modulation period measurements and energy spectrometer for energy loss and gain measurement of the drive bunch particles. The latest experimental results will be presented

    Shaping trailing beams for beam loading via beam-induced-ionization injection at FACET

    No full text
    International audienceRecent progress in plasma based accelerator technology has demonstrated its ability to deliver high energy (GeV) beams in compact structures (centimeter to meter scale plasmas). Current developments of that technology are oriented toward producing beams with quality and energy spread comparable to those obtained using standard accelerating structures. In plasma based accelerators, the beam energy spread can be improved during the acceleration process through beam loading. To achieve optimum beam loading, the beam has to be shaped such that the superposition of its space charge fields and plasma fields result in a uniform accelerating field. In this work we show how beam-induced-ionization injection can be used to shape and inject a trailing beam suitable for beam loading. Our particle-in-cell numerical simulations done with OSIRIS show the ionization injection of a shaped 340 pC, 13 kA and 3  μm long electron beam accelerated to 900 MeV in less than 3 cm of plasma. The configurations considered numerically were based on the beams and plasmas that have been and will be available at the FACET facility
    corecore