4 research outputs found

    A Internet of Things Improvng Deep Neural Network Based Particle Swarm Optimization Computation Prediction Approach for Healthcare System

    Get PDF
    Internet of Things (IoT) systems tend to generate with energy and good data to process and responding. In internet of things devices, the most important challenge when sending data to the cloud the level of energy consumption. This paper introduces an energy-efficient abstraction method data collection in medical with IoT-based for the exchange. Initially, the data required for IoT devices is collected from the person. First, Adaptive Optimized Sensor-Lamella Zive Welch (AOSLZW) is a pressure sensing prior to the data transmission technique used in the process. A cloud server is used data reducing  the amount of data sent from IoT devices to the AOSLZW strategy. Finally, a deep neural network (DNN) based on Particle Swarm Optimization (PSO) known as DNN-PSO algorithm is used for data sensed result model make decisions based as a predictive to make it. The results are studied under distinct scenarios of the presented of the performance for AOSLZW-DNN-PSO method, for that simation are studied under different sections. This current pattern of simalation results indicates that the AOSLZW-DNN-PSO method is effective under several aspects

    Analysis of Discrete-time queues with correlated arrivals, negative customers and server interruption

    Get PDF
    This paper analysis a discrete time infinite capacity queueing system with correlated arrival and negative customers served by two state Markovian server. Positive customers are generated according to the first order Markovian arrival process with geometrically distributed lengths of On periods and Off periods. Further, the geometrically distributed arrival of negative customer removes the positive customers is any, and has no effect when the system is empty. The server state is a two state Markov chain which alternate between Good and Bad states with geometrically distributed service times. Closed-form expressions for mean queue length, unfinished work and sojourn time distributions are obtained. Numerical illustrations are also presented

    Synthesis, Physical Characterization and Biological Activity of Some Schiff Base Complexes

    No full text
    Structural modification of organic molecule has considerable biological relevance. Further, coordination of a biomolecules to the metal ions significantly alters the effectiveness of the biomolecules. In view of the antimicrobial activity ligand [bis-(2-aminobenzaldehyde)] malonoyl dihydrazone], metal complexes with Cu(II), Ni(II), Zn(II) and oxovanadium(IV) have been synthesized and found to be potential antimicrobial agents. An attempt is also made to correlate the biological activities with geometry of the complexes. The complexes have been characterized by elemental analysis, molar conductance, spectra and cyclicvoltammetric measurements. The structural assessment of the complexes has been carried out based on electronic, infrared and molar conductivity values
    corecore