5 research outputs found

    Genome-wide transcriptome analysis using RNA-Seq reveals a large number of differentially expressed genes in a transient MCAO rat model

    No full text
    Abstract Background The transient middle cerebral artery occlusion (tMCAO) model is used for studying the molecular mechanisms of ischemic damage and neuroprotection. Numerous studies have demonstrated the role of individual genes and associated signaling pathways in the pathogenesis of ischemic stroke. Here, the tMCAO model was used to investigate the genome-wide response of the transcriptome of rat brain tissues to the damaging effect of ischemia and subsequent reperfusion. Results Magnetic resonance imaging and histological examination showed that the model of focal ischemia based on endovascular occlusion of the right middle cerebral artery for 90 min using a monofilament, followed by restoration of the blood flow, led to reproducible localization of ischemic damage in the subcortical structures of the brain. High-throughput RNA sequencing (RNA-Seq) revealed the presence of differentially expressed genes (DEGs) in subcortical structures of rat brains resulting from hemisphere damage by ischemia after tMCAO, as well as in the corresponding parts of the brains of sham-operated animals. Real-time reverse transcription polymerase chain reaction expression analysis of 20 genes confirmed the RNA-Seq results. We identified 469 and 1939 genes that exhibited changes in expression of > 1.5-fold at 4.5 and 24 h after tMCAO, respectively. Interestingly, we found 2741 and 752 DEGs under ischemia–reperfusion and sham-operation conditions at 24 h vs. 4.5 h after tMCAO, respectively. The activation of a large number of genes involved in inflammatory, immune and stress responses, apoptosis, ribosome function, DNA replication and other processes was observed in ischemia–reperfusion conditions. Simultaneously, massive down-regulation of the mRNA levels of genes involved in the functioning of neurotransmitter systems was recorded. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that dozens of signaling pathways were associated with DEGs in ischemia–reperfusion conditions. Conclusions The data obtained revealed a global profile of gene expression in the rat brain sub-cortex under tMCAO conditions that can be used to identify potential therapeutic targets in the development of new strategies for the prevention and treatment of ischemic stroke

    Synthesis and Investigation of Photophysical and Biological Properties of Novel <i>S</i>‑Containing Bacteriopurpurinimides

    No full text
    Novel hybrid molecule containing 2-mercaptoethylamine was synthesized starting from <i>O</i>-propyloxime-<i>N</i>-propoxy bacteriopurpurinimide (dipropoxy-BPI), which was readily oxidized in oxygen atmosphere yielding the corresponding disulfide analogue (disulfide-BPI). Spectral, photophysical, photodynamic, and biological properties of compound were properly evaluated. Compounds bearing disulfide moiety can directly interact with glutathione (GSH), thereby reducing its intracellular concentration. Indeed, mice sarcoma S37 cell line was treated in vitro with disulfide-BPI, yielding a CC<sub>50</sub> value of 0.05 ± 0.005 μM. A relatively high level of singlet oxygen was detected. It was demonstrated (by fluorescence) that the PS was rapidly accumulated in a cancer nest (S37) at a relatively high level after 2 h upon intravenous administration. After 24 h, no traces of the molecule were detected in the tumor mass. Moreover, high photodynamic efficiency was demonstrated at doses of 150–300 J/cm<sup>2</sup> against two different in vivo tumor models, achieving 100% regression of cancer growth
    corecore