11 research outputs found

    Stability of the Drift-Cyclotron Loss-Cone and Double-Humped Modes in Multispecies Plasmas

    No full text

    A Simple Algorithm for Semiquantitative Analysis of Scored Histology Data in the R Environment, on the Example of Murine Non-Alcoholic Steatohepatitis Pharmacotherapy

    No full text
    Despite the high medical and socioeconomic burden of non-alcoholic fatty liver disease (NAFLD), treatments that could effectively reduce histological liver damage in this condition are lacking. As providing only qualitative data is a major limitation of most histological scoring systems, we aimed to develop a simple and straightforward algorithm for semiquantitative analysis of scored histology data using the extended Fisher’s exact test in the R environment. As an illustrative example, we used the effects of L-ornithine L-aspartate (LOLA) and empagliflozin (EMPA) in a 3-month chemical/dietary murine model of NAFLD. 100 C57Bl/6 mice were randomized into 4 groups: Intact (n = 10), Control (NAFLD; n = 30), LOLA (NAFLD + 1.5 g·kg−1 b.w./d LOLA orally; n = 30), and EMPA (NAFLD + 10 mg·kg−1 b.w./d EMPA orally; n = 30). LOLA reduced hepatitis activity (p p p p < 0.01). The statistical approach we suggest can be used as a simple complementary tool for exploratory analysis of scored histology data

    A Simple Algorithm for Semiquantitative Analysis of Scored Histology Data in the R Environment, on the Example of Murine Non-Alcoholic Steatohepatitis Pharmacotherapy

    No full text
    Despite the high medical and socioeconomic burden of non-alcoholic fatty liver disease (NAFLD), treatments that could effectively reduce histological liver damage in this condition are lacking. As providing only qualitative data is a major limitation of most histological scoring systems, we aimed to develop a simple and straightforward algorithm for semiquantitative analysis of scored histology data using the extended Fisher&rsquo;s exact test in the R environment. As an illustrative example, we used the effects of L-ornithine L-aspartate (LOLA) and empagliflozin (EMPA) in a 3-month chemical/dietary murine model of NAFLD. 100 C57Bl/6 mice were randomized into 4 groups: Intact (n = 10), Control (NAFLD; n = 30), LOLA (NAFLD + 1.5 g&middot;kg&minus;1 b.w./d LOLA orally; n = 30), and EMPA (NAFLD + 10 mg&middot;kg&minus;1 b.w./d EMPA orally; n = 30). LOLA reduced hepatitis activity (p &lt; 0.05), cholestasis, necrosis, and fibrosis severity (p &lt; 0.01), and EMPA prevented necrosis (p &lt; 0.05) and reduced fibrosis severity (p &lt; 0.01). The statistical approach we suggest can be used as a simple complementary tool for exploratory analysis of scored histology data

    Changes in Brain Electrical Activity after Transient Middle Cerebral Artery Occlusion in Rats

    No full text
    Objectives. Ischemic stroke is a leading cause of death and disability worldwide. To search for new therapeutic and pharmacotherapeutic strategies, numerous models of this disease have been proposed, the most popular being transient middle cerebral artery occlusion. Behavioral and sensorimotor testing, biochemical, and histological methods are traditionally used in conjunction with this model to assess the effectiveness of potential treatment options. Despite its wide overall popularity, electroencephalography/electrocorticography is quite rarely used in such studies. Materials and methods. In the present work, we explored the changes in brain electrical activity at days 3 and 7 after 30- and 45-min of transient middle cerebral artery occlusion in rats. Results. Cerebral ischemia altered the amplitude and spectral electrocorticogram characteristics, and led to a reorganization of inter- and intrahemispheric functional connections. Ischemia duration affected the severity as well as the nature of the observed changes. Conclusions. The dynamics of changes in brain electrical activity may indicate a spontaneous partial recovery of impaired cerebral functions at post-surgery day 7. Our results suggest that electrocorticography can be used successfully to assess the functional status of the brain following ischemic stroke in rats as well as to investigate the dynamics of functional recovery

    Mechanical Behavior of Titanium Based Metal Matrix Composites Reinforced with TiC or TiB Particles under Quasi-Static and High Strain-Rate Compression

    No full text
    The mechanical behavior of titanium alloys has been mostly studied in quasi-static conditions when the strain rate does not exceed 10 s−1, while the studies performed in dynamic settings specifically for Ti-based composites are limited. Such data are critical to prevent the “strength margin” approach, which is used to assure the part performance under dynamic conditions in the absence of relevant data. The purpose of this study was to obtain data on the mechanical behavior of Ti-based composites under dynamic condition. The Metal Matrix Composites (MMC) on the base of the alloy Ti-6Al-4V (wt.%) were made using Blended Elemental Powder Metallurgy with different amounts of reinforcing particles: 5, 10, and 20% of TiC or 5, 10% (vol.) of TiB. Composites were studied at high strain rate compression ~1–3 × 103·s−1 using the split Hopkinson pressure bar. Mechanical behavior was analyzed considering strain rate, phase composition, microstructure, and strain energy (SE). It is shown that for the strain rates up to 1920 s−1, the strength and SE of MMC with 5% TiC are substantially higher compared to particles free alloy. The particles TiC localize the plastic deformation at the micro level, and fracturing occurs mainly by crushing particles and their aggregates. TiB MMCs have a finer grain structure and different mechanical behavior. MMC with 5 and 10% TiB do not break down at strain rates up to almost 3000 s−1; and 10% MMC surpasses other materials in the SE at strain rates exceeding 2200 s−1. The deformation mechanism of MMCs was evaluated
    corecore