34 research outputs found
Variations in the 6.2 m emission profile in starburst-dominated galaxies: a signature of polycyclic aromatic nitrogen heterocycles (PANHs)?
Analyses of the polycyclic aromatic hydrocarbon (PAH) feature profiles,
especially the 6.2 m feature, could indicate the presence of nitrogen
incorporated in their aromatic rings. In this work, 155 predominantly
starburst-dominated galaxies (including HII regions and Seyferts, for example),
extracted from the Spitzer/IRS ATLAS project (Hern\'an-Caballero &
Hatziminaoglou 2011), have their 6.2 m profiles fitted allowing their
separation into the Peeters' A, B and C classes (Peeters et al. 2002). 67% of
these galaxies were classified as class A, 31% were as class B and 2% as class
C. Currently class A sources, corresponding to a central wavelength near 6.22
m, seem only to be explained by polycyclic aromatic nitrogen heterocycles
(PANH, Hudgins et al. 2005), whereas class B may represent a mix between PAHs
and PANHs emissions or different PANH structures or ionization states.
Therefore, these spectra suggest a significant presence of PANHs in the
interstellar medium (ISM) of these galaxies that could be related to their
starburst-dominated emission. These results also suggest that PANHs constitute
another reservoir of nitrogen in the Universe, in addition to the nitrogen in
the gas phase and ices of the ISM
Comment on "Ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes" Comp. Mat. Sci. v.126 pp.503-513 (2017)
In a recent paper, the authors propose to separately calculate the volumetric
and chemical contributions to the elastic stiffness coefficients of systems
containing solutes, as it is "computationally more efficient". We show that
this is not the case and further that their methodology and hence their results
are incorrect. There is no short cut for performing the desired calculations,
if done rigorously, as we show in our 2012 work
EXA-2017-1S-FUNDAMENTOS DE PROGRAMACIÓN-13-Mejora.pdf
Distribution of promoter powers with strong consensus. (PDF 157 kb
Additional file 5: of Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells
Results of the enrichment analysis of genes that were differentially expressed in response to different stress factors. (XLSX 171 kb
Additional file 3: of Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells
(A) Description of all alternative splicing events in cancer cell lines after therapy. (B) Identification of stop codons in transcripts with retained introns, which were detected in at least half of cancer cell lines before and after chemotherapy. (C) Description of all alternative splicing events in PDX tumors after different types of therapy. (D) Identification of stop codons in transcripts with retained introns, which were detected in PDX tumors before and after chemotherapy. (E) Description of alternative splicing events in spliceosomal genes in PDX tumors after different types of therapy. (F) Description of insertions which were detected in 7 cell lines (A375, A549, H3122, N87, PC9, RT112, H358) used in our analysis of alternative splicing changes. (XLSX 716 kb
Additional file 4: of Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells
Figure S1. PCA clustering of splicing inclusion level differences between treated and untreated PDX tumors. Figure S2: Graph representing the common transcription factors GFI1B (A) and TARDBP (B) that may induce concerted changes in the expression of pairs of splicing- and mitotic-related genes after a course of chemotherapy. Solid black lines connect a pair of co-expressed genes and red lines connect transcription factors with their target genes. Figure S3: Western blotting analysis of U87MG cells and their concentrated secretomes before and after treatment with 30 μM Cisplatin (CP). Figure S4: Pladienolide B increases the sensitivity of cancer cells to Cisplatin. (A) Viability assay of U87MG, Hela and MCF-7 cells that were pretreated with 2 nM Pladienolide B (2 days) following treatment with different concentrations of Cisplatin (4 days). (B) FACS analysis of caspase 3/7 and SYTOX staining of SKOV3 cells treated with 0.5 nM Pladienolide B, 10 μM Cisplatin or both drugs together. (C) Cell cycle analysis of SKOV3 and HT29 cells treated for 3 days with 0.5 nM and 1 nM Pladienolide B, respectively. (D) FACS analysis of phospho ATM staining in Hela, A549 and HT29 cells that were cultivated with 1 nM Pladienolide B (2 days) and subsequently treated with the indicated concentrations of Cisplatin (1 day). (PDF 855 kb
Additional file 6: of Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells
Description of gene clusters identified by the time clusterization analysis. (XLSX 415 kb
Additional file 2: of Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells
Supplementary materials and methods. (PDF 151 kb
Additional file 1: of Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells
Full information regarding the mRNA microarray gene expression datasets used in this study. The dataset title is used in the text as a dataset identifier. (PDF 171 kb
Comparison of the graph properties between the microbiomes of the major studies.
<p>Comparison of the graph properties between the microbiomes of the major studies.</p