944 research outputs found

    A Twenty-Year Look at “Computational Geology,” an Evolving, In-Discipline Course in Quantitative Literacy at the University of South Florida

    Get PDF
    Since 1996, the Geology (GLY) program at the USF has offered “Computational Geology” as part of its commitment to prepare undergraduate majors for the quantitative aspects of their field. The course focuses on geological-mathematical problem solving. Over its twenty years, the course has evolved from a GATC (geometry-algebra-trigonometry-calculus) in-discipline capstone to a quantitative literacy (QL) course taught within a natural science major. With the formation of the new School of Geosciences in 2013, the merging departments re-examined their various curricular programs. An online survey of the Geology Alumni Society found that “express quantitative evidence in support of an argument” was more favorably viewed as a workplace skill (4th out of 69) than algebra (51st), trig (55th) and calculus 1 and 2 (59th and 60th). In that context, we decided to find out from successful alumni, “What did you get out of Computational Geology?” To that end, the first author carried out a formal, qualitative research study (narrative inquiry protocol), whereby he conducted, recorded, and transcribed semi-structured interviews of ten alumni selected from a list of 20 provided by the second author. In response to “Tell me what you remember from the course,” multiple alumni volunteered nine items: Excel (10 out of 10), Excel modules (8), Polya problem solving (5), “important” (4), unit conversions (4), back-of-the-envelope calculations (4), gender equality (3). In response to “Is there anything from the course that you used professionally or personally since graduating?” multiple alumni volunteered seven items: Excel (9 out of 10), QL/thinking (6), unit conversions (5), statistics (5), Excel modules (3), their notes (2). Outcome analysis from the open-ended comments arising from structured questions led to the identification of alumni takeaways in terms of elements of three values: (1) understanding and knowledge (facts such as conversion factors, and concepts such as proportions and log scales); (2) abilities and skills (communication, Excel, unit conversions); and (3) traits and dispositions (problem solving, confidence, and QL itself). The overriding conclusion of this case study is that QL education can have a place in geoscience education where the so-called context of the QL is interesting because it is in the students’ home major, and that such a course can be tailored to any level of program prerequisites

    On Animals , QL Converts, and Transfer - An Interview

    Get PDF
    In March 2017, Gizem Karaali interviewed Len Vacher, the editor in chief of Numeracy, the flagship journal of the National Numeracy Network. This is the extended transcript of this conversation, which ranges from quantitative literacy to computational geology, from transfer of learned content and skills to interdisciplinary collaboration

    Cave Levels, Marine Terraces, Paleoshorelines, and the Water Table in Peninsular Florida

    Get PDF
    Levels of passages are a common feature of many cave systems around the world. Likewise, coastal and marine terraces are common in coastal plain settings. This paper extends the discussion of cave levels from traditional research sites in the interior lowlands of the United States to the Atlantic Coastal Plains, namely peninsular Florida. Are there levels in Florida caves, and is there a link between the elevation of cave levels, marine terraces, paleoshorelines, and thus the water table, above and below present sea level in peninsular Florida

    Astrophysical and local constraints on string theory: runaway dilaton models

    Full text link
    One of the clear predictions of string theory is the presence of a dynamical scalar partner of the spin-2 graviton, known as the dilaton. This will violate the Einstein Equivalence Principle, leading to a plethora of possibly observable consequences which is a cosmological context include dynamical dark energy and spacetime variations of nature's fundamental constants. The runaway dilaton scenario of Damour, Piazza and Veneziano is a particularly interesting class of string theory inspired models which can in principle reconcile a massless dilaton with experimental data. Here we use the latest background cosmology observations, astrophysical and laboratory tests of the stability of the fine-structure constant and local tests of the Weak Equivalence Principle to provide updated constraints on this scenario, under various simplifying assumptions. Overall we find consistency with the standard Λ\LambdaCDM paradigm, and we improve the existing constraints on the coupling of the dilaton to baryonic matter by a factor of six, and to the dark sector by a factor of two. At the one sigma level the current data already excludes dark sector couplings of order unity, which would be their natural value.Comment: 7 pages, 4 figures; Phys. Rev. D (in press

    Electron dynamics following photoionization: decoherence due to the nuclear-wave-packet width

    No full text
    The advent of attosecond techniques opens up the possibility to observe experimentally electron dynamics following ionization of molecules. Theoretical studies of pure electron dynamics at single fixed nuclear geometries in molecules have demonstrated oscillatory charge migration at a well-defined frequency but often neglecting the natural width of the nuclear wave packet. The effect on electron dynamics of the spatial delocalization of the nuclei is an outstanding question. Here, we show how the inherent distribution of nuclear geometries leads to dephasing. Using a simple analytical model, we demonstrate that the conditions for a long-lived electronic coherence are a narrow nuclear wave packet and almost parallel potential-energy surfaces of the states involved. We demonstrate with numerical simulations the decoherence of electron dynamics for two real molecular systems (paraxylene and polycyclic norbornadiene), which exhibit different decoherence time scales. To represent the quantum distribution of geometries of the nuclear wave packet, the Wigner distribution function is used. The electron dynamics decoherence result has significant implications for the interpretation of attosecond spectroscopy experiments since one no longer expects long-lived oscillations

    Small Angle Scattering by Fractal Aggregates: A Numerical Investigation of the Crossover Between the Fractal Regime and the Porod Regime

    Full text link
    Fractal aggregates are built on a computer using off-lattice cluster-cluster aggregation models. The aggregates are made of spherical particles of different sizes distributed according to a Gaussian-like distribution characterised by a mean a0a_0 and a standard deviation σ\sigma. The wave vector dependent scattered intensity I(q)I(q) is computed in order to study the influence of the particle polydispersity on the crossover between the fractal regime and the Porod regime. It is shown that, given a0a_0, the location qcq_c of the crossover decreases as σ\sigma increases. The dependence of qcq_c on σ\sigma can be understood from the evolution of the shape of the center-to-center interparticle-distance distribution function.Comment: RevTex, 4 pages + 6 postscript figures, compressed using "uufiles", published in Phys. Rev. B 50, 1305 (1994

    Risk factors associated with post-kidney transplant malignancies: An article from the Cancer-Kidney International Network

    Get PDF
    © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA.. In kidney transplant recipients, cancer is one of the leading causes of death with a functioning graft beyond the first year of kidney transplantation, and malignancies account for 8-10% of all deaths in the USA (2.6 deaths/1000 patient-years) and exceed 30% of deaths in Australia (5/1000 patient-years) in kidney transplant recipients. Patient-, transplant- and medication-related factors contribute to the increased cancer risk following kidney transplantation. While it is well established that the overall immunosuppressive dose is associated with an increased risk for cancer following transplantation, the contributive effect of different immunosuppressive agents is not well established. In this review we will discuss the different risk factors for malignancies after kidney transplantation

    Cancer and renal insufficiency results of the BIRMA study

    Get PDF
    Background: Half of anticancer drugs are predominantly excreted in urine. Dosage adjustment in renal insufficiency (RI) is, therefore, a crucial issue. Moreover, patients with abnormal renal function are at high risk for drug-induced nephrotoxicity. The Belgian Renal Insufficiency and Anticancer Medications (BIRMA) study investigated the prevalence of RI in cancer patients, and the profile/dosing of anticancer drugs prescribed. Methods:Primary end point: to estimate the prevalence of abnormal glomerular filtration rate (GFR; estimated with the abbreviated Modification of Diet in Renal Disease formula) and RI in cancer patient. Secondary end point: to describe the profile of anticancer drugs prescribed (dose reduction/nephrotoxicity). Data were collected for patients presenting at one of the seven Belgian BIRMA centres in March 2006. Results: A total of 1218 patients were included. The prevalence of elevated SCR (1.2 mg per 100 ml) was 14.9%, but 64.0% had a GFR90 ml min 1 per 1.73 m 2. In all, 78.6% of treated patients (n1087) were receiving at least one drug needing dosage adjustment and 78.1% received at least one nephrotoxic drug. In all, 56.5% of RI patients receiving chemotherapy requiring dose reduction in case of RI did not receive dose adjustment. Conclusions: The RI is highly frequent in cancer patients. In all, 80% of the patients receive potentially nephrotoxic drugs and/or for which dosage must be adjusted in RI. Oncologists should check the appropriate dose of chemotherapeutic drugs in relation to renal function before prescribing. © 2010 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Control Synthesis for Stochastic Switched Systems using the Tamed Euler Method

    Get PDF
    In this paper, we explain how, under the one-sided Lipschitz (OSL) hypothesis, one can find an error bound for a variant of the Euler-Maruyama approximation method for stochastic switched systems. We then explain how this bound can be used to control stochastic switched switched system in order to stabilize them in a given region. The method is illustrated on several examples of the literature
    corecore