107 research outputs found

    An Improved Upper Bound for the Ring Loading Problem

    Full text link
    The Ring Loading Problem emerged in the 1990s to model an important special case of telecommunication networks (SONET rings) which gained attention from practitioners and theorists alike. Given an undirected cycle on nn nodes together with non-negative demands between any pair of nodes, the Ring Loading Problem asks for an unsplittable routing of the demands such that the maximum cumulated demand on any edge is minimized. Let LL be the value of such a solution. In the relaxed version of the problem, each demand can be split into two parts where the first part is routed clockwise while the second part is routed counter-clockwise. Denote with L∗L^* the maximum load of a minimum split routing solution. In a landmark paper, Schrijver, Seymour and Winkler [SSW98] showed that L≤L∗+1.5DL \leq L^* + 1.5D, where DD is the maximum demand value. They also found (implicitly) an instance of the Ring Loading Problem with L=L∗+1.01DL = L^* + 1.01D. Recently, Skutella [Sku16] improved these bounds by showing that L≤L∗+1914DL \leq L^* + \frac{19}{14}D, and there exists an instance with L=L∗+1.1DL = L^* + 1.1D. We contribute to this line of research by showing that L≤L∗+1.3DL \leq L^* + 1.3D. We also take a first step towards lower and upper bounds for small instances

    Management of Lung Nodules and Lung Cancer Screening During the COVID-19 Pandemic: CHEST Expert Panel Report

    Get PDF
    Background: The risks from potential exposure to coronavirus disease 2019 (COVID-19), and resource reallocation that has occurred to combat the pandemic, have altered the balance of benefits and harms that informed current (pre-COVID-19) guideline recommendations for lung cancer screening and lung nodule evaluation. Consensus statements were developed to guide clinicians managing lung cancer screening programs and patients with lung nodules during the COVID-19 pandemic. / Methods: An expert panel of 24 members, including pulmonologists (n = 17), thoracic radiologists (n = 5), and thoracic surgeons (n = 2), was formed. The panel was provided with an overview of current evidence, summarized by recent guidelines related to lung cancer screening and lung nodule evaluation. The panel was convened by video teleconference to discuss and then vote on statements related to 12 common clinical scenarios. A predefined threshold of 70% of panel members voting agree or strongly agree was used to determine if there was a consensus for each statement. Items that may influence decisions were listed as notes to be considered for each scenario. / Results: Twelve statements related to baseline and annual lung cancer screening (n = 2), surveillance of a previously detected lung nodule (n = 5), evaluation of intermediate and high-risk lung nodules (n = 4), and management of clinical stage I non–small-cell lung cancer (n = 1) were developed and modified. All 12 statements were confirmed as consensus statements according to the voting results. The consensus statements provide guidance about situations in which it was believed to be appropriate to delay screening, defer surveillance imaging of lung nodules, and minimize nonurgent interventions during the evaluation of lung nodules and stage I non–small-cell lung cancer. / Conclusions: There was consensus that during the COVID-19 pandemic, it is appropriate to defer enrollment in lung cancer screening and modify the evaluation of lung nodules due to the added risks from potential exposure and the need for resource reallocation. There are multiple local, regional, and patient-related factors that should be considered when applying these statements to individual patient care

    The Philadelphia Lung Cancer Learning Community: A Multi-Health-System, Citywide Approach to Lung Cancer Screening

    Get PDF
    Background Lung cancer screening uptake for individuals at high risk is generally low across the United States, and reporting of lung cancer screening practices and outcomes is often limited to single hospitals or institutions. We describe a citywide, multicenter analysis of individuals receiving lung cancer screening integrated with geospatial analyses of neighborhood-level lung cancer risk factors. Methods The Philadelphia Lung Cancer Learning Community consists of lung cancer screening clinicians and researchers at the 3 largest health systems in the city. This multidisciplinary, multi-institutional team identified a Philadelphia Lung Cancer Learning Community study cohort that included 11 222 Philadelphia residents who underwent low-dose computed tomography for lung cancer screening from 2014 to 2021 at a Philadelphia Lung Cancer Learning Community health-care system. Individual-level demographic and clinical data were obtained, and lung cancer screening participants were geocoded to their Philadelphia census tract of residence. Neighborhood characteristics were integrated with lung cancer screening counts to generate bivariate choropleth maps. Results The combined sample included 37.8% Black adults, 52.4% women, and 56.3% adults who currently smoke. Of 376 residential census tracts in Philadelphia, 358 (95.2%) included 5 or more individuals undergoing lung cancer screening, and the highest counts were geographically clustered around each health system’s screening sites. A relatively low percentage of screened adults resided in census tracts with high tobacco retailer density or high smoking prevalence. Conclusions The sociodemographic characteristics of lung cancer screening participants in Philadelphia varied by health system and neighborhood. These results suggest that a multicenter approach to lung cancer screening can identify vulnerable areas for future tailored approaches to improving lung cancer screening uptake. Future directions should use these findings to develop and test collaborative strategies to increase lung cancer screening at the community and regional levels

    Peripheral Immune Cell Gene Expression Predicts Survival of Patients with Non-Small Cell Lung Cancer

    Get PDF
    Prediction of cancer recurrence in patients with non-small cell lung cancer (NSCLC) currently relies on the assessment of clinical characteristics including age, tumor stage, and smoking history. A better prediction of early stage cancer patients with poorer survival and late stage patients with better survival is needed to design patient-tailored treatment protocols. We analyzed gene expression in RNA from peripheral blood mononuclear cells (PBMC) of NSCLC patients to identify signatures predictive of overall patient survival. We find that PBMC gene expression patterns from NSCLC patients, like patterns from tumors, have information predictive of patient outcomes. We identify and validate a 26 gene prognostic panel that is independent of clinical stage. Many additional prognostic genes are specific to myeloid cells and are more highly expressed in patients with shorter survival. We also observe that significant numbers of prognostic genes change expression levels in PBMC collected after tumor resection. These post-surgery gene expression profiles may provide a means to re-evaluate prognosis over time. These studies further suggest that patient outcomes are not solely determined by tumor gene expression profiles but can also be influenced by the immune response as reflected in peripheral immune cells

    Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?

    Get PDF
    BACKGROUND:High-throughput gene expression profiling technologies generating a wealth of data, are increasingly used for characterization of tumor biopsies for clinical trials. By applying machine learning algorithms to such clinically documented data sets, one hopes to improve tumor diagnosis, prognosis, as well as prediction of treatment response. However, the limited number of patients enrolled in a single trial study limits the power of machine learning approaches due to over-fitting. One could partially overcome this limitation by merging data from different studies. Nevertheless, such data sets differ from each other with regard to technical biases, patient selection criteria and follow-up treatment. It is therefore not clear at all whether the advantage of increased sample size outweighs the disadvantage of higher heterogeneity of merged data sets. Here, we present a systematic study to answer this question specifically for breast cancer data sets. We use survival prediction based on Cox regression as an assay to measure the added value of merged data sets. RESULTS:Using time-dependent Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) and hazard ratio as performance measures, we see in overall no significant improvement or deterioration of survival prediction with merged data sets as compared to individual data sets. This apparently was due to the fact that a few genes with strong prognostic power were not available on all microarray platforms and thus were not retained in the merged data sets. Surprisingly, we found that the overall best performance was achieved with a single-gene predictor consisting of CYB5D1. CONCLUSIONS:Merging did not deteriorate performance on average despite (a) The diversity of microarray platforms used. (b) The heterogeneity of patients cohorts. (c) The heterogeneity of breast cancer disease. (d) Substantial variation of time to death or relapse. (e) The reduced number of genes in the merged data sets. Predictors derived from the merged data sets were more robust, consistent and reproducible across microarray platforms. Moreover, merging data sets from different studies helps to better understand the biases of individual studies and can lead to the identification of strong survival factors like CYB5D1 expression

    Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer

    Get PDF

    International project finance: review and implications for international finance and international business

    Get PDF
    • …
    corecore