3 research outputs found

    DIGITAL TECHNOLOGY AS SUPPORT OF COGNITIVE PROCESSES OF PEOPLE WITH VISUAL IMPAIRMENTS

    Get PDF
    At present, we increasingly encounter the concept of so-called digital literacy. Digital technologies are constantly evolving in this field and play an important role in human life. They are important not only in the labor market but also in education and human skills development. Digital technologies are thus one of the means by which we can develop the cognitive processes of visually impaired people. We can thus help them to improve a number of areas that are limited due to loss or reduction of visual perception. Especially, thinking, memory, and creating ideas are very important. This contribution was created within the solution of the project TAČR – Reduction of information deficit and development of the imagination of visually impaired people through 3D models with auditory elements in cooperation with the project PIGŽU – Support of information literacy of pupils and teachers. The first of the projects aims to reduce the information deficit caused by the loss or reduction of visual perception in visually impaired people using multisensory action. At the same time, it aims to develop their spatial imagination. The second project then focus on the creation of digital aids, which aims primarily at the development and support of computational thinking. In addition to mainstream primary school pupils, the project also focuses on pupils with special educational needs, including visually impaired individuals. The main output of the project is the creation of aids, including methodologies, using digital technologies. These are technologies such as Ozobot, Blue-Bot, or Bee-bot. The aim of the paper is to acquaint with the project, to provide at least basic information about digital technologies, and especially to describe the possibilities of personality development, skills, and abilities using these technologies in visually impaired students.

    Functional reorganization of monoamine transport systems during villous trophoblast differentiation: evidence of distinct differences between primary human trophoblasts and BeWo cells.

    Get PDF
    BACKGROUND Three primary monoamines-serotonin, norepinephrine, and dopamine-play major roles in the placenta-fetal brain axis. Analogously to the brain, the placenta has transport mechanisms that actively take up these monoamines into trophoblast cells. These transporters are known to play important roles in the differentiated syncytiotrophoblast layer, but their status and activities in the undifferentiated, progenitor cytotrophoblast cells are not well understood. Thus, we have explored the cellular handling and regulation of monoamine transporters during the phenotypic transitioning of cytotrophoblasts along the villous pathway. METHODS Experiments were conducted with two cellular models of syncytium development: primary trophoblast cells isolated from the human term placenta (PHT), and the choriocarcinoma-derived BeWo cell line. The gene and protein expression of membrane transporters for serotonin (SERT), norepinephrine (NET), dopamine (DAT), and organic cation transporter 3 (OCT3) was determined by quantitative PCR and Western blot analysis, respectively. Subsequently, the effect of trophoblast differentiation on transporter activity was analyzed by monoamine uptake into cells. RESULTS We present multiple lines of evidence of changes in the transcriptional and functional regulation of monoamine transporters associated with trophoblast differentiation. These include enhancement of SERT and DAT gene and protein expression in BeWo cells. On the other hand, in PHT cells we report negative modulation of SERT, NET, and OCT3 protein expression. We show that OCT3 is the dominant monoamine transporter in PHT cells, and its main functional impact is on serotonin uptake, while passive transport strongly contributes to norepinephrine and dopamine uptake. Further, we show that a wide range of selective serotonin reuptake inhibitors affect serotonin cellular accumulation, at pharmacologically relevant drug concentrations, via their action on both OCT3 and SERT. Finally, we demonstrate that BeWo cells do not well reflect the molecular mechanisms and properties of healthy human trophoblast cells. CONCLUSIONS Collectively, our findings provide insights into the regulation of monoamine transport during trophoblast differentiation and present important considerations regarding appropriate in vitro models for studying monoamine regulation in the placenta

    Characterization of a human placental clearance system to regulate serotonin levels in the fetoplacental unit

    No full text
    Abstract Background Serotonin (5-HT) is a biogenic monoamine with diverse functions in multiple human organs and tissues. During pregnancy, tightly regulated levels of 5-HT in the fetoplacental unit are critical for proper placental functions, fetal development, and programming. Despite being a non-neuronal organ, the placenta expresses a suite of homeostatic proteins, membrane transporters and metabolizing enzymes, to regulate monoamine levels. We hypothesized that placental 5-HT clearance is important for maintaining 5-HT levels in the fetoplacental unit. We therefore investigated placental 5-HT uptake from the umbilical circulation at physiological and supraphysiological levels as well as placental metabolism of 5-HT to 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA efflux from trophoblast cells. Methods We employed a systematic approach using advanced organ-, tissue-, and cellular-level models of the human placenta to investigate the transport and metabolism of 5-HT in the fetoplacental unit. Human placentas from uncomplicated term pregnancies were used for perfusion studies, culturing explants, and isolating primary trophoblast cells. Results Using the dually perfused placenta, we observed a high and concentration-dependent placental extraction of 5-HT from the fetal circulation. Subsequently, within the placenta, 5-HT was metabolized to 5-hydroxyindoleacetic acid (5-HIAA), which was then unidirectionally excreted to the maternal circulation. In the explant cultures and primary trophoblast cells, we show concentration- and inhibitor-dependent 5-HT uptake and metabolism and subsequent 5-HIAA release into the media. Droplet digital PCR revealed that the dominant gene in all models was MAO-A, supporting the crucial role of 5-HT metabolism in placental 5-HT clearance. Conclusions Taken together, we present transcriptional and functional evidence that the human placenta has an efficient 5-HT clearance system involving (1) removal of 5-HT from the fetal circulation by OCT3, (2) metabolism to 5-HIAA by MAO-A, and (3) selective 5-HIAA excretion to the maternal circulation via the MRP2 transporter. This synchronized mechanism is critical for regulating 5-HT in the fetoplacental unit; however, it can be compromised by external insults such as antidepressant drugs
    corecore