437 research outputs found

    ZOR: Zero Overhead Reliability Strategies for AI Accelerators

    Get PDF
    This research investigates the crucial integration of Neural Network (NN) models with the architecture of the hardware (HW) accelerator. Unlike existing approaches overlooking this interaction, we emphasize understanding the accelerator Datapath for reliability-focused algorithmic solutions. Focusing on Systolic Arrays Datapath, we theoretically evaluate the fault propagation from the HW layer to the NN. This analysis identifies variations in fault effects linked to various data mapping strategies. Considering the fault propagation model, we propose a novel reliability-oriented mapping strategy to mitigate fault effects based on resource rotation. Validation through HW fault injection demonstrates that an architecture-aware NN implementation reduces the impact of faults by up to 40%. Moreover, experimental results indicate that our proposed solution enhances the NN resilience, resulting in up to a 30% reduction in the error rate. Most importantly, these enhancements are attained without introducing performance or hardware overhead

    Sulphur vs NH Group: Effects on the CO2 Electroreduction Capability of Phenylenediamine-Cp Cobalt Complexes

    Get PDF
    The cobalt complex (I) with cyclopentadienyl and 2-aminothiophenolate ligands was investigated as a homogeneous catalyst for electrochemical CO2 reduction. By comparing its behavior with an analogous complex with the phenylenediamine (II), the effect of sulfur atom as a substituent has been evaluated. As a result, a positive shift of the reduction potential and the reversibility of the corresponding redox process have been observed, also suggesting a higher stability of the compound with sulfur. Under anhydrous conditions, complex I showed a higher current enhancement in the presence of CO2 (9.41) in comparison with II (4.12). Moreover, the presence of only one -NH group in I explained the difference in the observed increases on the catalytic activity toward CO2 due to the presence of water, with current enhancements of 22.73 and 24.40 for I and II, respectively. DFT calculations confirmed the effect of sulfur on the lowering of the energy of the frontier orbitals of I, highlighted by electrochemical measurements. Furthermore, the condensed Fukui function f - values agreed very well with the current enhancement observed in the absence of water

    Novel homogeneous selective electrocatalysts for CO2 reduction: an electrochemical and computational study of cyclopentadienyl-phenylendiamino-cobalt complexes

    Get PDF
    Four cyclopentadienyl-phenylendiamino-cobalt complexes [CoCp(bqdi)] with different substituents (R) at the phenylene moiety (bqdi, I; o-perfluoro-bqdi, II; p-NO2-bqdi, III; p-COOH-bqdi, IV) have been studied with an aim to investigate their capability as catalysts for the CO2 reduction. These compounds were characterized by cyclic voltammetry measurements both under nitrogen and CO2 atmospheres, showing an increase in the cathodic current ranging from 3.36 (III) to 5.59 times (II) that of the measurement under nitrogen. Moreover, with the addition of water, the current enhancement in the presence of CO2 reaches 31.07 times that of the case of complex II. Interestingly, these complexes exhibit very good selectivity toward CO2 reduction irrespective of hydrogen even in the presence of water. The relative turnover frequencies were also estimated, given the values ranging from 3.23 (III) to 187.21 s−1 (II) in the presence of water. In addition, these results were analysed by means of density functional theory (DFT) calculations and Fukui functions analysis. In particular, DFT results clearly show effects of different substituents on the electrochemical properties of these compounds. Whereas, the Fukui functions analysis indicates that the most favourable positions for an electrophilic attack on the reduced complex are the nitrogen and cobalt atoms

    Skyrmion Logic-In-Memory Architecture for Maximum/Minimum Search

    Get PDF
    In modern computing systems there is the need to utilize a large amount of data in maintaining high efficiency. Limited memory bandwidth, coupled with the performance gap between memory and logic, impacts heavily on algorithms performance, increasing the overall time and energy required for computation. A possible approach to overcome such limitations is Logic-In-Memory (LIM). In this paper, we propose a LIM architecture based on a non-volatile skyrmion-based recetrack memory. The architecture can be used as a memory or can perform advanced logic functions on the stored data, for example searching for the maximum/minimum number. The circuit has been designed and validated using physical simulations for the memory array together with digital design tools for the control logic. The results highlight the small area of the proposed architecture and its good energy efficiency compared with a reference CMOS implementation

    The personal and interpersonal components of perfectionism: the Italian validation of “Multidimensional Inventory of Perfectionism in Sport”

    Get PDF
    The present research focused on the general theme of perfectionism in the sport domain, and it provided the first empirical validation of the original 72-item “Multidimensional Inventory of Perfectionism in Sport” (MIPS) among Italian athletes. The study, specifically, also focused on the relations linking personal and interpersonal components of perfectionism to athletes’ competitive anxiety. The research overall relied on data from 644 Italian sport science students and professional athletes and included both cross-sectional and longitudinal designs. Data analyses primarily focused on structural equation modeling, and the findings overall supported the psychometric and construct validity of the Italian version of the MIPS, also highlighting the key role of the personal components of perfectionism

    Enabling Logic Computation Between Ta/CoFeB/MgO Nanomagnets

    Get PDF
    Dipolar coupled magnets proved to have the potential to be capable of successfully performing digital computation in a highly parallel way. For that, nanomagnet-based computation requires precise control of the domain wall nucleation from a well-localized region of the magnet. Co/Pt and Co/Ni multilayer stacks were successfully used to demonstrate a variety of computing devices. However, Ta/CoFeB/MgO appears more promising, thanks to the lower switching field required to achieve a full magnetization reversal, reduced thickness (less than 10 nm), and its compatibility with magnetic tunnel junctions. In this work, the switch of the information is achieved through the application of a magnetic field, which allows to scale more the nanomagnets with respect to current-driven magnetization reversal-based devices and to go toward 3-D structures. We experimentally demonstrate that Ga ions can be used to tune the energy landscape of the structured magnets to provide signal directionality and achieve a distinct logic computation. We prove that it is possible to define the artificial nucleation center (ANC) in different structures with two irradiation steps and that this approach can enable logic computation in ultrathin films by dipolar interaction. Moreover, different from previous studies, the results coming from the irradiation analysis are then used for real logic devices. We present the experimental demonstration of a set of fully working planar inverters, showing that it is possible to reach a coupling field between the input and the output, which is strong enough to reliably implement logic operations. Micromagnetic simulations are used to study the nucleation center's effectiveness with respect to its position in the magnet and to support the experiments. Our results open the path to the development of more efficient nanomagnet-based logic circuits

    Consequences of simulated microgravity in neural stem cells: biological effects and metabolic response.

    Get PDF
    Objective: Microgravity was often shown to cause cell damage and impair cell cycle in a variety of biological systems. Since the effects on the neural system were poorly investigated, we aimed to gain insight into how biological processes such as cell cycle, cell damage, stemness features and metabolic status are involved in neural stem cells (NSC) when they experience simulated microgravity. We also wished to investigate whether these modulations were transient or permanent once cells were returned to normal gravity. Methods: NSC were isolated from mouse cerebella and cultured in the Rotary Cell Culture System (RCCS) to model microgravity. We analyzed cell cycle, stress and apoptotic response. We also performed a 1H NMR-based metabolomic analysis and evaluation of stemness features of NSC in simulated microgravity and once in the returned to normogravity cell culture. Results: Biological processes and metabolic status were modulated by simulated microgravity. Cells were arrested in S-phase together with enhanced apoptosis. Metabolic changes occurred in NSC after simulated microgravity. Interestingly, these modulations were transient. Indeed, stemness features and metabolic footprint returned to basal levels after few days of culture in normal conditions. Moreover NSC clonogenic ability was not impaired. Conclusions: Our data suggest that simulated microgravity impacts on NSC biological processes, including cell cycle and apoptosis. However, NSC does not suffer from permanent damage
    • 

    corecore