22 research outputs found

    Laguerre-Gaussian wave propagation in parabolic media

    Full text link
    We report a new set of Laguerre-Gaussian wave-packets that propagate with periodical self-focusing and finite beam width in weakly guiding inhomogeneous media. These wave-packets are solutions to the paraxial form of the wave equation for a medium with parabolic refractive index. The beam width is defined as a solution of the Ermakov equation associated to the harmonic oscillator, so its amplitude is modulated by the strength of the medium inhomogeneity. The conventional Laguerre-Gaussian modes, available for homogenous media, are recovered as a particular case.Comment: 11 pages, 5 figure

    Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting lasers

    Get PDF
    We report the experimental observation of two-dimensional vector cavity solitons in a Vertical-Cavity Surface-Emitting Laser (VCSEL) under linearly polarized optical injection when varying optical injection linear polarization direction. The polarization of the cavity soliton is not the one of the optical injection as it acquires a distinct ellipticity. These experimental results are qualitatively reproduced by the spin-flip VCSEL model. Our findings open the road to polarization multiplexing when using cavity solitons in broad-area lasers as pixels in information technology

    Developments in the Photonic Theory of Fluorescence

    Get PDF
    Conventional fluorescence commonly arises when excited molecules relax to their ground electronic state, and most of the surplus energy dissipates in the form of photon emission. The consolidation and full development of theory based on this concept has paved the way for the discovery of several mechanistic variants that can come into play with the involvement of laser input – most notably the phenomenon of multiphoton-induced fluorescence. However, other effects can become apparent when off-resonant laser input is applied during the lifetime of the initial excited state. Examples include a recently identified scheme for laser-controlled fluorescence. Other systems of interest are those in which fluorescence is emitted from a set of two or more coupled nanoemitters. This chapter develops a quantum theoretical outlook to identify and describe these processes, leading to a discussion of potential applications ranging from all-optical switching to the generation of optical vortices

    Light's twist

    No full text

    Neutrons with a twist

    No full text
    corecore