6 research outputs found

    Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management

    Get PDF
    Atrioventricular block is classified as congeni- tal if diagnosed in utero, at birth, or within the first month of life. The pathophysiological process is believed to be due to immune-mediated injury of the conduction system, which occurs as a result of transplacental pas- sage of maternal anti-SSA/Ro-SSB/La antibodies. Childhood atrioventricular block is therefore diagnosed between the first month and the 18th year of life. Genetic variants in multiple genes have been described to date in the pathogenesis of inherited progressive car- diac conduction disorders. Indications and techniques of cardiac pacing have also evolved to allow safe perma- nent cardiac pacing in almost all patients, including those with structural heart abnormalities

    Syntax-Guided Optimal Synthesis for Chemical Reaction Networks

    Get PDF
    We study the problem of optimal syntax-guided synthesis of stochastic Chemical Reaction Networks (CRNs) that plays a fundamental role in design automation of molecular devices and in the construction of predictive biochemical models. We propose a sketching language for CRNs that concisely captures syntactic constraints on the network topology and allows its under-specification. Given a sketch, a correctness specification, and a cost function defined over the CRN syntax, our goal is to find a CRN that simultaneously meets the constraints, satisfies the specification and minimizes the cost function. To ensure computational feasibility of the synthesis process, we employ the Linear Noise Approximation allowing us to encode the synthesis problem as a satisfiability modulo theories problem over a set of parametric Ordinary Differential Equations (ODEs). We design and implement a novel algorithm for the optimal synthesis of CRNs that employs almost complete refutation procedure for SMT over reals and ODEs, and exploits a meta-sketching abstraction controlling the search strategy. Through relevant case studies we demonstrate that our approach significantly improves the capability of existing methods for synthesis of biochemical systems and paves the way towards their automated and provably-correct design
    corecore