11 research outputs found

    Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management

    Get PDF
    Atrioventricular block is classified as congeni- tal if diagnosed in utero, at birth, or within the first month of life. The pathophysiological process is believed to be due to immune-mediated injury of the conduction system, which occurs as a result of transplacental pas- sage of maternal anti-SSA/Ro-SSB/La antibodies. Childhood atrioventricular block is therefore diagnosed between the first month and the 18th year of life. Genetic variants in multiple genes have been described to date in the pathogenesis of inherited progressive car- diac conduction disorders. Indications and techniques of cardiac pacing have also evolved to allow safe perma- nent cardiac pacing in almost all patients, including those with structural heart abnormalities

    Management of simultaneous traumatic brain injury and aortic injury

    No full text
    Simultaneous traumatic brain injury (TBI) and aortic injury has been considered unsurvivable for many years because treatments such as sedation and blood pressure goals conflict for these 2 conditions. Additionally, surgical interventions for aortic injury often require full anticoagulation, which is contraindicated in patients with TBI. For these reasons, and due to the relative rarity of aortic injury/TBI, little data are available to guide treating physicians. A retrospective review was performed on all simultaneous TBI and aortic injury cases from 2000 to 2012 at a university-affiliated, Level I trauma center. Patient demographics, imaging studies, interventions, and outcomes were analyzed. Traumatic brain injury/aortic injury cases treated with endovascular stenting were specifically studied to determine trends in procedure timing, use of anticoagulation, and neurological outcome. Thirty-three patients with concurrent TBI and aortic injury were identified over a 12-year period. The median patient age was 44 years (range 16-86 years) and the overall mortality rate after imaging diagnosis was 46%. All surviving patients were awake and neurologically functional at discharge, and 83% were discharged home or to rehabilitation facilities. Patients who died had a higher Injury Severity Scale score (p = 0.006). Severe TBI (p = 0.045) or hemodynamic instability (p = 0.015) upon arrival to the hospital was also correlated with increased mortality rates. Thirty-three percent of aortic injury/TBI patients (n = 11) underwent endovascular stenting, and 7 of these patients received intravenous anticoagulation therapy at the time of surgery. Six of these 7 anticoagulation-treated patients experienced no significant progression on postoperative brain CT, whereas 1 patient died of hemodynamic instability prior to undergoing further imaging. Simultaneous TBI and aortic injury is a rare condition with a historically poor prognosis. However, these results suggest that many patients can survive with a good quality of life. Technological advances such as endovascular aortic stenting may improve patient outcome, and anticoagulation is not absolutely contraindicated after TBI
    corecore