36 research outputs found

    Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β

    Get PDF
    Myogenic differentiation involves myoblast fusion and induction of muscle-specific gene expression, which are both stimulated by pharmacological (LiCl), genetic, or IGF-I-mediated GSK-3β inactivation. To assess whether stimulation of myogenic differentiation is common to ligand-mediated GSK-3β inactivation, myoblast fusion and muscle-specific gene expression were investigated in response to Wnt-3a. Moreover, crosstalk between IGF-I/GSK-3β/NFATc3 and Wnt/GSK-3β/β-catenin signaling was assessed. While both Wnt-3a and LiCl promoted myoblast fusion, muscle-specific gene expression was increased by LiCl, but not by Wnt-3a or β-catenin over-expression. Furthermore, LiCl and IGF-I, but not Wnt-3a, increased NFATc3 transcriptional activity. In contrast, β-catenin-dependent transcriptional activity was increased by Wnt-3a and LiCl, but not IGF-I. These results for the first time reveal a segregated regulation of myoblast fusion and muscle-specific gene expression following stimulation of myogenic differentiation in response to distinct ligand-specific signaling routes of GSK-3β inactivation

    Management of colorectal cancer presenting with synchronous liver metastases

    Get PDF
    Up to a fifth of patients with colorectal cancer (CRC) present with synchronous hepatic metastases. In patients with CRC who present without intestinal obstruction or perforation and in whom comprehensive whole-body imaging confirms the absence of extrahepatic disease, evidence indicates a state of equipoise between several different management pathways, none of which has demonstrated superiority. Neoadjuvant systemic chemotherapy is advocated by current guidelines, but must be integrated with surgical management in order to remove the primary tumour and liver metastatic burden. Surgery for CRC with synchronous liver metastases can take a number of forms: the 'classic' approach, involving initial colorectal resection, interval chemotherapy and liver resection as the final step; simultaneous removal of the liver and bowel tumours with neoadjuvant or adjuvant chemotherapy; or a 'liver-first' approach (before or after systemic chemotherapy) with removal of the colorectal tumour as the final procedure. In patients with rectal primary tumours, the liver-first approach can potentially avoid rectal surgery in patients with a complete response to chemoradiotherapy. We overview the importance of precise nomenclature, the influence of clinical presentation on treatment options, and the need for accurate, up-to-date surgical terminology, staging tests and contemporary management options in CRC and synchronous hepatic metastatic disease, with an emphasis on multidisciplinary care

    Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis

    No full text
    The inactivation of glycogen synthase kinase (GSK)3 has been proposed to play important roles in insulin and Wnt signalling. To define the role that inactivation of GSK3 plays, we generated homozygous knockin mice in which the protein kinase B phosphorylation sites on GSK3α (Ser21) and GSK3β (Ser9) were changed to Ala. The knockin mice were viable and were not diabetic. Using these mice we show that inactivation of GSK3β rather than GSK3α is the major route by which insulin activates muscle glycogen synthase. In contrast, we demonstrate that the activation of muscle glycogen synthase by contraction, the stimulation of muscle glucose uptake by insulin, or the activation of hepatic glycogen synthase by glucose do not require GSK3 phosphorylation on Ser21/Ser9. GSK3 also becomes inhibited in the Wnt-signalling pathway, by a poorly defined mechanism. In GSK3α/GSK3β homozygous knockin cells, Wnt3a induces normal inactivation of GSK3, as judged by the stabilisation of β-catenin and stimulation of Wnt-dependent transcription. These results establish the function of Ser21/Ser9 phosphorylation in several processes in which GSK3 inactivation has previously been implicated
    corecore