13 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Whole-genome sequencing facilitates patient-specific quantitative PCR-based minimal residual disease monitoring in acute lymphoblastic leukaemia, neuroblastoma and Ewing sarcoma

    Get PDF
    Background: Minimal residual disease (MRD) measurement is a cornerstone of contemporary acute lymphoblastic leukaemia (ALL) treatment. The presence of immunoglobulin (Ig) and T cell receptor (TCR) gene recombinations in leukaemic clones allows widespread use of patient-specific, DNA-based MRD assays. In contrast, paediatric solid tumour MRD remains experimental and has focussed on generic assays targeting tumour-specific messenger RNA, methylated DNA or microRNA. Methods: We examined the feasibility of using whole-genome sequencing (WGS) data to design tumour-specific polymerase chain reaction (PCR)-based MRD tests (WGS-MRD) in 18 children with high-risk relapsed cancer, including ALL, high-risk neuroblastoma (HR-NB) and Ewing sarcoma (EWS) (n = 6 each). Results: Sensitive WGS-MRD assays were generated for each patient and allowed quantitation of 1 tumour cell per 10−4 (0.01%)–10–5 (0.001%) mononuclear cells. In ALL, WGS-MRD and Ig/TCR-MRD were highly concordant. WGS-MRD assays also showed good concordance between quantitative PCR and droplet digital PCR formats. In serial clinical samples, WGS-MRD correlated with disease course. In solid tumours, WGS-MRD assays were more sensitive than RNA-MRD assays. Conclusions: WGS facilitated the development of patient-specific MRD tests in ALL, HR-NB and EWS with potential clinical utility in monitoring treatment response. WGS data could be used to design patient-specific MRD assays in a broad range of tumours

    The impact of diabetes on tuberculosis treatment outcomes: a systematic review.

    Get PDF
    BACKGROUND: Multiple studies of tuberculosis treatment have indicated that patients with diabetes mellitus may experience poor outcomes.We performed a systematic review and meta-analysis to quantitatively summarize evidence for the impact of diabetes on tuberculosis outcomes. METHODS: We searched PubMed, EMBASE and the World Health Organization Regional Indexes from 1 January 1980 to 31 December 2010 and references of relevant articles for reports of observational studies that included people with diabetes treated for tuberculosis. We reviewed the full text of 742 papers and included 33 studies of which 9 reported culture conversion at two to three months, 12 reported the combined outcome of failure and death, 23 reported death, 4 reported death adjusted for age and other potential confounding factors, 5 reported relapse, and 4 reported drug resistant recurrent tuberculosis. RESULTS: Diabetes is associated with an increased risk of failure and death during tuberculosis treatment. Patients with diabetes have a risk ratio (RR) for the combined outcome of failure and death of 1.69 (95% CI, 1.36 to 2.12). The RR of death during tuberculosis treatment among the 23 unadjusted studies is 1.89 (95% CI, 1.52 to 2.36), and this increased to an effect estimate of 4.95 (95% CI, 2.69 to 9.10) among the 4 studies that adjusted for age and other potential confounding factors. Diabetes is also associated with an increased risk of relapse (RR, 3.89; 95% CI, 2.43 to 6.23). We did not find evidence for an increased risk of tuberculosis recurrence with drug resistant strains among people with diabetes. The studies assessing sputum culture conversion after two to three months of tuberculosis therapy were heterogeneous with relative risks that ranged from 0.79 to 3.25. CONCLUSIONS: Diabetes increases the risk of failure and death combined, death, and relapse among patients with tuberculosis. This study highlights a need for increased attention to treatment of tuberculosis in people with diabetes, which may include testing for suspected diabetes, improved glucose control, and increased clinical and therapeutic monitoring

    Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach

    No full text
    corecore