76 research outputs found

    Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility

    Get PDF
    Phycoremediation is the use of algae for the removal or biotransformation of pollutants from wastewater. Employing this technology in the treatment of industrial effluents presents an alternative to the current practice of using conventional methods, including physical and chemical methods. In the present study, the effluent from a leather-processing chemical manufacturing facility, situated at Ranipet, Tamil Nadu, India, was treated using the microalga, Chlorella vulgaris, which was isolated from the effluent itself. The objective of this study was to treat the effluent as well as ETP (effluent treatment plant) solid waste by phycoremediation (pilot-scale field study as well as laboratory study) and to analyse the physico-chemical parameters before and after treatment. The results obtained showed that Chlorella  vulgaris exhibited appreciable nutrient scavenging properties under both laboratory and field conditions, although phycoremediation carried out in sunlight (field study) gave better results. Moreover, the growth of Chlorella vulgaris was faster under field conditions.Keywords: Phycoremediation, microalgae, Chlorella vulgaris, effluent, ETP soli

    Distributed Change Detection via Average Consensus over Networks

    Full text link
    Distributed change-point detection has been a fundamental problem when performing real-time monitoring using sensor-networks. We propose a distributed detection algorithm, where each sensor only exchanges CUSUM statistic with their neighbors based on the average consensus scheme, and an alarm is raised when local consensus statistic exceeds a pre-specified global threshold. We provide theoretical performance bounds showing that the performance of the fully distributed scheme can match the centralized algorithms under some mild conditions. Numerical experiments demonstrate the good performance of the algorithm especially in detecting asynchronous changes.Comment: 15 pages, 8 figure

    Captivity-induced behaviour and spatial learning abilities in an enigmatic, aquifer-dwelling blind eel, Rakthamichthys digressus

    Get PDF
    We investigated the impact of captive life on behaviour and learning abilities in an enigmatic, aquifer-dwelling blind eel, Rakthamichthys digressus. Of eight major behavioural traits related to exploration and activity in a novel arena, four were significantly altered by life in captivity. While the startle response upon introduction into the arena and overall swimming away from the walls increased after captivity, inactivity exhibited immediately after the startle and the reaction to an external disturbance decreased. We also observed behavioural syndromes between ‘startle responses’ and ‘horizontal wall following’, and between ‘overall activity’ and ‘vertical wall following’; however, these behavioural syndromes were not altered by maintenance in captivity. Interestingly, this blind-eel failed to learn a simple spatial task in a Y-maze apparatus. Captive-associated behavioural changes in R. digressus may influence their survival after reintroduction into natural habitats, and such changes must be taken into account while developing protocols for ex-situ conservation and subsequent release

    Optical Lattices: Theory

    Full text link
    This chapter presents an overview of the properties of a Bose-Einstein condensate (BEC) trapped in a periodic potential. This system has attracted a wide interest in the last years, and a few excellent reviews of the field have already appeared in the literature (see, for instance, [1-3] and references therein). For this reason, and because of the huge amount of published results, we do not pretend here to be comprehensive, but we will be content to provide a flavor of the richness of this subject, together with some useful references. On the other hand, there are good reasons for our effort. Probably, the most significant is that BEC in periodic potentials is a truly interdisciplinary problem, with obvious connections with electrons in crystal lattices, polarons and photons in optical fibers. Moreover, the BEC experimentalists have reached such a high level of accuracy to create in the lab, so to speak, paradigmatic Hamiltonians, which were first introduced as idealized theoretical models to study, among others, dynamical instabilities or quantum phase transitions.Comment: Chapter 13 in Part VIII: "Optical Lattices" of "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer Series on Atomic, Optical, and Plasma Physics, 2007) - pages 247-26

    Cooperative Game Theory Approaches for Network Partitioning

    Get PDF
    International audienceThe paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting denser subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link density but also the mechanisms of cluster formation. Specifically, we suggest two approaches from cooperative game theory: the first approach is based on the Myerson value, whereas the second approach is based on hedonic games. Both approaches allow to detect clusters with various resolution. However, the tuning of the resolution parameter in the hedonic games approach is particularly intuitive. Furthermore, the modularity based approach and its generalizations can be viewed as particular cases of the hedonic games

    De-Novo Discovery of Differentially Abundant Transcription Factor Binding Sites Including Their Positional Preference

    Get PDF
    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open-source Java framework Jstacs and as a stand-alone application at http://www.jstacs.de/index.php/Dispom

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and comparative studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of large-scale data sets via clustering techniques is utilized in a number of applications. Biclustering in particular has emerged as an important problem in the analysis of gene expression data since genes may only jointly respond over a subset of conditions. Biclustering algorithms also have important applications in sample classification where, for instance, tissue samples can be classified as cancerous or normal. Many of the methods for biclustering, and clustering algorithms in general, utilize simplified models or heuristic strategies for identifying the "best" grouping of elements according to some metric and cluster definition and thus result in suboptimal clusters.</p> <p>Results</p> <p>In this article, we present a rigorous approach to biclustering, OREO, which is based on the Optimal RE-Ordering of the rows and columns of a data matrix so as to globally minimize the dissimilarity metric. The physical permutations of the rows and columns of the data matrix can be modeled as either a network flow problem or a traveling salesman problem. Cluster boundaries in one dimension are used to partition and re-order the other dimensions of the corresponding submatrices to generate biclusters. The performance of OREO is tested on (a) metabolite concentration data, (b) an image reconstruction matrix, (c) synthetic data with implanted biclusters, and gene expression data for (d) colon cancer data, (e) breast cancer data, as well as (f) yeast segregant data to validate the ability of the proposed method and compare it to existing biclustering and clustering methods.</p> <p>Conclusion</p> <p>We demonstrate that this rigorous global optimization method for biclustering produces clusters with more insightful groupings of similar entities, such as genes or metabolites sharing common functions, than other clustering and biclustering algorithms and can reconstruct underlying fundamental patterns in the data for several distinct sets of data matrices arising in important biological applications.</p

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    • …
    corecore