45 research outputs found

    Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase

    Get PDF
    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences

    The origin of second harmonic generation hotspots in chiral optical metamaterials [Invited]

    Get PDF
    Novel ways to detect the handedness in chiral optical metamaterials by means of the second harmonic generation (SHG) process have recently been proposed. However, the precise origin of the SHG emission has yet to be unambiguously established. In this paper, we present computational simulations of both the electric currents and the electromagnetic fields in chiral planar metamaterials, at the fundamental frequency (FF), and discuss the implications of our results on the characteristics of experimentally measured SHG. In particular, we show that the results of our numerical simulations are in good agreement with the experimental mapping of SHG sources. Thus, the SHG in these metamaterials can be attributed to a strong local enhancement of the electromagnetic fields at the FF, which depends on the particular structure of the patterned metamaterial

    Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale.

    Get PDF
    Circularly polarized light is incident on a nanostructured chiral meta-surface. In the nanostructured unit cells whose chirality matches that of light, superchiral light is forming and strong optical second harmonic generation can be observed

    Nucleation of superconductivity and vortex matter in superconductor-ferromagnet hybrids

    No full text
    The theoretical and experimental results concerning the thermodynamical and low-frequency transport properties of hybrid structures, consisting of spatially separated conventional low-temperature superconductors (S) and ferromagnets (F), are reviewed. Since the superconducting and ferromagnetic parts are assumed to be electrically insulated, no proximity effect is present and thus the interaction between both subsystems is through their respective magnetic stray fields. Depending on the temperature range and the value of the external field H-ext, different behavior of such S/F hybrids is anticipated. Rather close to the superconducting phase transition line, when the superconducting state is only weakly developed, the magnetization of the ferromagnet is solely determined by the magnetic history of the system and it is not influenced by the field generated by the supercurrents. In contrast to that, the nonuniform magnetic field pattern, induced by the ferromagnet, strongly affects the nucleation of superconductivity, leading to an exotic dependence of the critical temperature T-c on H-ext. Deeper in the superconducting state the effect of the screening currents cannot be neglected anymore. In this region of the phase diagram T-H-ext various aspects of the interaction between vortices and magnetic inhomogeneities are discussed. In the last section we briefly summarize the physics of S/F hybrids when the magnetization of the ferromagnet is no longer fixed but can change under the influence of the superconducting currents. As a consequence, the superconductor and ferromagnet become truly coupled and the equilibrium configuration of this 'soft' S/F hybrid requires rearrangements of both superconducting and ferromagnetic characteristics, as compared with 'hard' S/F structures.status: publishe

    Vortex states inside the superconducting phase of a thin microtriangle

    No full text
    By combining the non-linear Ginzburg-Landau equations with a gauge transformation of the vector potential that accounts for the superconducting/vacuum boundary condition, the superconducting phase of a thin microtriangle under a perpendicular magnetic field is investigated. We determine the symmetry-breaking and symmetry-switching transitions that the nucleated order parameter may undergo when decreasing the temperature well below the phase boundary. It is shown that symmetry consistent vortex-antivortex patterns are stable in a broad range of temperatures and magnetic fields. The geometry of the sample also induces crossovers between vortex states unexpected for other regular polygons.status: publishe
    corecore