23,143 research outputs found

    Maximum Independent Sets in Subcubic Graphs: New Results

    Get PDF
    The maximum independent set problem is known to be NP-hard in the class of subcubic graphs, i.e. graphs of vertex degree at most 3. We present a polynomial-time solution in a subclass of subcubic graphs generalizing several previously known results

    Multiple Conclusion Rules in Logics with the Disjunction Property

    Full text link
    We prove that for the intermediate logics with the disjunction property any basis of admissible rules can be reduced to a basis of admissible m-rules (multiple-conclusion rules), and every basis of admissible m-rules can be reduced to a basis of admissible rules. These results can be generalized to a broad class of logics including positive logic and its extensions, Johansson logic, normal extensions of S4, n-transitive logics and intuitionistic modal logics

    Quantum Algorithm for Triangle Finding in Sparse Graphs

    Full text link
    This paper presents a quantum algorithm for triangle finding over sparse graphs that improves over the previous best quantum algorithm for this task by Buhrman et al. [SIAM Journal on Computing, 2005]. Our algorithm is based on the recent O~(n5/4)\tilde O(n^{5/4})-query algorithm given by Le Gall [FOCS 2014] for triangle finding over dense graphs (here nn denotes the number of vertices in the graph). We show in particular that triangle finding can be solved with O(n5/4ϵ)O(n^{5/4-\epsilon}) queries for some constant ϵ>0\epsilon>0 whenever the graph has at most O(n2c)O(n^{2-c}) edges for some constant c>0c>0.Comment: 13 page

    Stochastic density functional theory

    Get PDF
    Linear-scaling implementations of density functional theory (DFT) reach their intended efficiency regime only when applied to systems having a physical size larger than the range of their Kohn-Sham density matrix (DM). This causes a problem since many types of large systems of interest have a rather broad DM range and are therefore not amenable to analysis using DFT methods. For this reason, the recently proposed stochastic DFT (sDFT), avoiding exhaustive DM evaluations, is emerging as an attractive alternative linear-scaling approach. This review develops a general formulation of sDFT in terms of a (non)orthogonal basis representation and offers an analysis of the statistical errors (SEs) involved in the calculation. Using a new Gaussian-type basis-set implementation of sDFT, applied to water clusters and silicon nanocrystals, it demonstrates and explains how the standard deviation and the bias depend on the sampling rate and the system size in various types of calculations. We also develop basis-set embedded-fragments theory, demonstrating its utility for reducing the SEs for energy, density of states and nuclear force calculations. Finally, we discuss the algorithmic complexity of sDFT, showing it has CPU wall-time linear-scaling. The method parallelizes well over distributed processors with good scalability and therefore may find use in the upcoming exascale computing architectures

    A note on Makeev's conjectures

    Full text link
    A counterexample is given for the Knaster-like conjecture of Makeev for functions on S2S^2. Some particular cases of another conjecture of Makeev, on inscribing a quadrangle into a smooth simple closed curve, are solved positively

    Justification of the symmetric damping model of the dynamical Casimir effect in a cavity with a semiconductor mirror

    Full text link
    A "microscopic" justification of the "symmetric damping" model of a quantum oscillator with time-dependent frequency and time-dependent damping is given. This model is used to predict results of experiments on simulating the dynamical Casimir effect in a cavity with a photo-excited semiconductor mirror. It is shown that the most general bilinear time-dependent coupling of a selected oscillator (field mode) to a bath of harmonic oscillators results in two equal friction coefficients for the both quadratures, provided all the coupling coefficients are proportional to a single arbitrary function of time whose duration is much shorter than the periods of all oscillators. The choice of coupling in the rotating wave approximation form leads to the "mimimum noise" model of the quantum damped oscillator, introduced earlier in a pure phenomenological way.Comment: 9 pages, typos corrected, corresponds to the published version, except for the reference styl

    Developments in Rare Kaon Decay Physics

    Get PDF
    We review the current status of the field of rare kaon decays. The study of rare kaon decays has played a key role in the development of the standard model, and the field continues to have significant impact. The two areas of greatest import are the search for physics beyond the standard model and the determination of fundamental standard-model parameters. Due to the exquisite sensitivity of rare kaon decay experiments, searches for new physics can probe very high mass scales. Studies of the k->pnn modes in particular, where the first event has recently been seen, will permit tests of the standard-model picture of quark mixing and CP violation.Comment: One major revision to the text is the branching ratio of KL->ppg, based on a new result from KTeV. Several references were updated, with minor modifications to the text. A total of 48 pages, with 28 figures, in LaTeX; to be published in the Annual Review of Nuclear and Particle Science, Vol. 50, December 200

    Quantum Sine(h)-Gordon Model and Classical Integrable Equations

    Full text link
    We study a family of classical solutions of modified sinh-Gordon equation, $\partial_z\partial_{{\bar z}} \eta-\re^{2\eta}+p(z)\,p({\bar z})\ \re^{-2\eta}=0with with p(z)=z^{2\alpha}-s^{2\alpha}.Weshowthatcertainconnectioncoefficientsforsolutionsoftheassociatedlinearproblemcoincidewiththe. We show that certain connection coefficients for solutions of the associated linear problem coincide with the QfunctionofthequantumsineGordon-function of the quantum sine-Gordon (\alpha>0)orsinhGordon or sinh-Gordon (\alpha<-1)$ models.Comment: 35 pages, 3 figure

    Algorithmic statistics: forty years later

    Full text link
    Algorithmic statistics has two different (and almost orthogonal) motivations. From the philosophical point of view, it tries to formalize how the statistics works and why some statistical models are better than others. After this notion of a "good model" is introduced, a natural question arises: it is possible that for some piece of data there is no good model? If yes, how often these bad ("non-stochastic") data appear "in real life"? Another, more technical motivation comes from algorithmic information theory. In this theory a notion of complexity of a finite object (=amount of information in this object) is introduced; it assigns to every object some number, called its algorithmic complexity (or Kolmogorov complexity). Algorithmic statistic provides a more fine-grained classification: for each finite object some curve is defined that characterizes its behavior. It turns out that several different definitions give (approximately) the same curve. In this survey we try to provide an exposition of the main results in the field (including full proofs for the most important ones), as well as some historical comments. We assume that the reader is familiar with the main notions of algorithmic information (Kolmogorov complexity) theory.Comment: Missing proofs adde

    Qubit portrait of the photon-number tomogram and separability of two-mode light states

    Full text link
    In view of the photon-number tomograms of two-mode light states, using the qubit-portrait method for studying the probability distributions with infinite outputs, the separability and entanglement detection of the states are studied. Examples of entangled Gaussian state and Schr\"{o}dinger cat state are discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser Researc
    corecore