17 research outputs found

    The PPCD1 Mouse: Characterization of a Mouse Model for Posterior Polymorphous Corneal Dystrophy and Identification of a Candidate Gene

    Get PDF
    The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD) and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the “mouse PPCD1” phenotype and mapped the mouse locus for this phenotype, designated “Ppcd1”, to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bptm1a(KOMP)Wtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD

    Application of Homozygosity Haplotype Analysis to Genetic Mapping with High-Density SNP Genotype Data

    Get PDF
    BACKGROUND: In families segregating a monogenic genetic disorder with a single disease gene introduction, patients share a mutation-carrying chromosomal interval with identity-by-descent (IBD). Such a shared chromosomal interval or haplotype, surrounding the actual pathogenic mutation, is typically detected and defined by multipoint linkage and phased haplotype analysis using microsatellite or SNP genotype data. High-density SNP genotype data presents a computational challenge for conventional genetic analyses. A novel non-parametric method termed Homozygosity Haplotype (HH) was recently proposed for the genome-wide search of the autosomal segments shared among patients using high density SNP genotype data. METHODOLOGY/PRINCIPAL FINDINGS: The applicability and the effectiveness of HH in identifying the potential linkage of disease causative gene with high-density SNP genotype data were studied with a series of monogenic disorders ascertained in eastern Canadian populations. The HH approach was validated using the genotypes of patients from a family affected with a rare autosomal dominant disease Schnyder crystalline corneal dystrophy. HH accurately detected the approximately 1 Mb genomic interval encompassing the causative gene UBIAD1 using the genotypes of only four affected subjects. The successful application of HH to identify the potential linkage for a family with pericentral retinal disorder indicates that HH can be applied to perform family-based association analysis by treating affected and unaffected family members as cases and controls respectively. A new strategy for the genome-wide screening of known causative genes or loci with HH was proposed, as shown the applications to a myoclonus dystonia and a renal failure cohort. CONCLUSIONS/SIGNIFICANCE: Our study of the HH approach demonstrates that HH is very efficient and effective in identifying potential disease linked region. HH has the potential to be used as an efficient alternative approach to sequencing or microsatellite-based fine mapping for screening the known causative genes in genetic disease study

    Proteomic profiling of TGFBI-null mouse corneas reveals only minor changes in matrix composition supportive of TGFBI knockdown as therapy against TGFBI-linked corneal dystrophies

    Get PDF
    TGFBIp is a constituent of the extracellular matrix in many human tissues including the cornea, where it is one of the most abundant proteins expressed. TGFBIp interacts with Type I, II, IV, VI, and XII collagens as well as several members of the integrin family, suggesting it plays an important role in maintaining structural integrity and possibly corneal transparency as well. Significantly, more than 60 point mutations within the TGFBI gene have been reported to result in aberrant TGFBIp folding and aggregation in the cornea, resulting in severe visual impairment and blindness. Several studies have focused on targeting TGFBIp in the cornea as a therapeutic approach to treat TGFBI-linked corneal dystrophies, but the effect of this approach on corneal homeostasis and matrix integrity remained unknown. In the current study, we evaluated the histological and proteomic profiles of corneas from TGFBI-deficient mice as well as potential redundant functions of the paralogous protein POSTN. The absence of TGFBIp in mouse corneas did not grossly affect the collagen scaffold, and POSTN is unable to compensate for loss of TGFBIp. Proteomic comparison of wild-type and TGFBI-/- mice revealed 11 proteins were differentially regulated, including Type VI and XII collagens. However, as these alterations did not manifest at the macroscopic and behavioral levels, these data support partial or complete TGFBI knockdown as a potential therapy against TGFBI-linked corneal dystrophies. Lastly, in situ hybridization verified TGFBI mRNA in the epithelial cells but not in other cell types, supportive of a therapy directed specifically at this lineage
    corecore