12 research outputs found

    High-efficiency multiphoton boson sampling

    Get PDF
    This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences, the National Fundamental Research Program, and the State of Bavaria.Boson sampling is considered as a strong candidate to demonstrate ‘quantum computational supremacy’ over classical computers. However, previous proof-of-principle experiments suffered from small photon number and low sampling rates owing to the inefficiencies of the single-photon sources and multiport optical interferometers. Here, we develop two central components for high-performance boson sampling: robust multiphoton interferometers with 99% transmission rate and actively demultiplexed single-photon sources based on a quantum dot–micropillar with simultaneously high efficiency, purity and indistinguishability. We implement and validate three-, four- and five-photon boson sampling, and achieve sampling rates of 4.96 kHz, 151 Hz and 4 Hz, respectively, which are over 24,000 times faster than previous experiments. Our architecture can be scaled up for a larger number of photons and with higher sampling rates to compete with classical computers, and might provide experimental evidence against the extended Church–Turing thesis.PostprintPostprintPostprintPeer reviewe
    corecore