3 research outputs found

    Conduction in ulnar nerve bundles that innervate the proximal and distal muscles: a clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aims to investigate and compare the conduction parameters of nerve bundles in the ulnar nerve that innervates the forearm muscles and hand muscles; routine electromyography study merely evaluates the nerve segment of distal (hand) muscles.</p> <p>Methods</p> <p>An electrophysiological evaluation, consisting of velocities, amplitudes, and durations of ulnar nerve bundles to 2 forearm muscles and the hypothenar muscles was performed on the same humeral segment.</p> <p>Results</p> <p>The velocities and durations of the compound muscle action potential (CMAP) of the ulnar nerve bundle to the proximal muscles were greater than to distal muscles, but the amplitudes were smaller.</p> <p>Conclusions</p> <p>Bundles in the ulnar nerve of proximal muscles have larger neuronal bodies and thicker nerve fibers than those in the same nerve in distal muscles, and their conduction velocities are higher. The CMAPs of proximal muscles also have smaller amplitudes and greater durations. These findings can be attributed to the desynchronization that is caused by a wider range of distribution in nerve fiber diameters.</p> <p>Conduction parameters of nerve fibers with different diameters in the same peripheral nerve can be estimated.</p

    Diverse Synaptic Terminals on Rat Stapedius Motoneurons

    No full text
    Stapedius motoneurons (SMN) mediate the contraction of the stapedius muscle, which protects the inner ear from injury and reduces the masking effects of background noise. A variety of inputs to SMNs are known to exist, but their terminal ultrastructure has not been investigated. We characterized the synaptic terminals on retrogradely labeled SMNs found just ventromedial to the facial motor nucleus. About 80% of the terminals contained round synaptic vesicles. One type (Sm Rnd) had small, round vesicles filling the terminal with occasional dense core vesicles and formed an asymmetric synapse. Sm Rnd terminals were small with lengths of apposition to the SMN less than 3 μm. Partial reconstructions from serial sections demonstrated that these terminals formed up to three synapses per terminal. Another terminal type (Lg Rnd) had large, round vesicles and asymmetric synapses. Most Lg Rnd terminals were small but some were extensive, e.g., abutting the SMN for up to 10 μm. One of these terminals formed at least seven synapses. Another terminal type (Pleo) had pleomorphic vesicles and symmetric active zones that, in some cases, were invaginated by spines from the SMN. A fourth uncommon terminal type (Het Rnd) had round vesicles of heterogeneous sizes and asymmetric synapses. A fifth rare terminal type (Cist) had large, round vesicles and an accompanying subsurface cistern in the SMN. These were generally the same kinds of terminals found on other motoneurons, but the high proportion of round vesicle synapses indicate that SMNs receive mostly excitatory inputs
    corecore