19 research outputs found

    Understanding the mechanisms of cooperative physico-chemical treatment and mechanical disintegration of biomass as a route for enhancing enzyme saccharification

    Get PDF
    A novel chemico-kinetic disintegration model has been applied to study the cooperative relationship between physico-chemical treatment and supplementary wet-state milling of biomass, as an efficient process route to achieve high enzyme accessibility. Wheat straw, Miscanthus and short-rotation willow were studied as three contrasting biomass species, which were subjected to controlled hydrothermal pretreatment using a microwave reactor, followed by controlled wet-state ball-milling. Comparative particle disintegration behaviour and related enzyme digestibilities have been interpreted on the basis of model parameters and with evaluation of textural and chemical differences in tissue structures, aided by the application of specific material characterisation techniques. Supplementary milling led to a 1.3×, 1.6× and 3× enhancement in glucose saccharification yield after 24 h for straw, Miscanthus and willow, respectively, following a standardised 10-min hydrothermal treatment, with corresponding milling energy savings of 98, 97 and 91% predicted from the model, compared to the unmilled case. The results confirm the viability of pretreatment combined with supplementary wet-milling as an efficient process route. The results will be valuable in understanding the key parameters for process design and optimisation and also the key phenotypical parameters for feedstock breeding and selection for highest saccharification yield

    Activation of adherent vascular neutrophils in the lung during acute endotoxemia

    Get PDF
    BACKGROUND: Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature. METHODS: Rats were treated with 5 mg/kg lipopolysaccharide (i.v.) to induce acute endotoxemia. Adherent neutrophils were isolated from the lung vasculature by collagenase digestion and sequential filtering. Agarose gel electrophoresis, RT-PCR, western blotting and electrophoretic mobility shift assays were used to evaluate neutrophil activity. RESULTS: Adherent vascular neutrophils isolated from endotoxemic animals exhibited decreased apoptosis when compared to cells from control animals. This was associated with a marked increase in expression of the anti-apoptotic protein, Mcl-1. Cells isolated 0.5–2 hours after endotoxin administration were more chemotactic than cells from control animals and expressed increased tumor necrosis factor-alpha and cyclooxygenase-2 mRNA and protein, demonstrating that they are functionally activated. Endotoxin treatment of the animals also induced p38 and p44/42 mitogen activated protein kinases in the adherent lung neutrophils, as well as nuclear binding activity of the transcription factors, NF-κB and cAMP response element binding protein. CONCLUSION: These data demonstrate that adherent vascular lung neutrophils are highly responsive to endotoxin and that pathways regulating apoptosis and cellular activation are upregulated in these cells

    Spreading Kinetics of a Destructive Melt Over a Solid

    No full text

    Some Promising Trends in Ice Mechanics

    No full text
    corecore