6 research outputs found

    Evidence for transcript-specific epigenetic regulation of glucocorticoid-stimulated skeletal muscle 11 beta-hydroxysteroid dehydrogenase-1 activity in type 2 diabetes

    Get PDF
    BACKGROUND: The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) converts inactive cortisone into active cortisol in insulin target tissues. In people with type 2 diabetes, skeletal muscle (SkM) 11βHSD1 is upregulated by the potent glucocorticoid dexamethasone. The HSD11B1 gene has two promoters designated P1 and P2. CCAAT/enhancer-binding protein beta (C/EBPβ) is known to regulate expression of 11βHSD1 via the P2 promoter. In this study, we investigated the potential role of altered DNA methylation of the P1 and P2 promoters in the observed dexamethasone-induced upregulation of SkM 11βHSD1 oxoreductase activity in human diabetic subjects. SkM biopsies from 15 people with type 2 diabetes were collected before and after treatment with oral dexamethasone 4 mg/day for 4 days and SkM 11βHSD1, C/EBPβ and P1 and P2 promoter region mRNA levels were measured by quantitative RT-PCR. 11βHSD1 oxoreductase activity was quantified by measuring the conversion of radiolabeled 3H-cortisone to cortisol by thin layer chromatography. Analysis of HSD11B1 promoter methylation (P1 and P2) was performed using Sequenom MassARRAY EpiTYPER analysis. RESULTS: Dexamethasone treatment resulted in a significant increase in 11βHSD1 mRNA levels (P = 0.003), oxoreductase activity (P = 0.017) and C/EBPβ mRNA (P = 0.015), and increased expression of both the P1 (P = 0.008) and P2 (P = 0.016) promoter regions . The distal P1 promoter region showed a significant reduction in methylation following dexamethasone (P = 0.026). There was a significant negative correlation between the change in methylation at this site and the increment in 11βHSD1 oxoreductase activity (r = -0.62, P = 0.014). CONCLUSIONS: Our findings of reduced methylation in the HSD11B1 P1 promoter in association with increased 11βHSD1 oxoreductase activity implicate complex multi-promoter epigenetic mechanisms in the regulation of 11βHSD1 levels in SkM

    In silico structure-function analysis of pathological variation in the HSD11B2 gene sequence

    Get PDF
    11β-Hydroxysteroid dehydrogenase type 2 (11βHSD2) is a short-chain dehydrogenase/reductase (SDR) responsible for inactivating cortisol and preventing its binding to the mineralocorticoid receptor (MR). Nonfunctional mutations in HSD11B2, the gene encoding 11βHSD2, cause the hypertensive syndrome of apparent mineralocorticoid excess (AME). Like other such Mendelian disorders, AME is rare but has nevertheless helped to illuminate principles fundamental to the regulation of blood pressure. Furthermore, polymorphisms in HSD11B2 have been associated with salt sensitivity, a major risk factor for cardiovascular mortality. It is therefore highly likely that sequence variation in HSD11B2, having subtle functional ramifications, will affect blood pressure in the wider population. In this study, a three-dimensional homology model of 11βHSD2 was created and used to hypothesize the functional consequences in terms of protein structure of published mutations in HSD11B2. This approach underscored the strong genotype-phenotype correlation of AME: severe forms of the disease, associated with little in vivo enzyme activity, arise from mutations occurring in invariant alignment positions. These were predicted to exert gross structural changes in the protein. In contrast, those mutations causing a mild clinical phenotype were in less conserved regions of the protein that were predicted to be relatively more tolerant to substitution. Finally, a number of pathogenic mutations are shown to be associated with regions predicted to participate in dimer formation, and in protein stabilization, which may therefore suggest molecular mechanisms of disease

    Microenvironmental control of glucocorticoid functions in immune regulation

    No full text
    corecore