7 research outputs found

    Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy

    Get PDF
    To discern the effect of the end-Permian (P-Tr) ecological crisis on land, interactions between plants and their insect herbivores were examined for four time intervals containing ten major floras from the Dolomites of northeastern Italy during a Permian-Triassic interval. These floras are: (i) the Kungurian Tregiovo Flora;(ii) the Wuchiapingian Bletterbach Flora;(iii) three Anisian floras;and (iv) five Ladinian floras. Derived plant-insect interactional data is based on 4242 plant specimens (1995 Permian, 2247 Triassic) allocated to 86 fossil taxa (32 Permian, 56 Triassic), representing lycophytes, sphenophytes, pteridophytes, pterido-sperms, ginkgophytes, cycadophytes and coniferophytes from 37 million-year interval (23 m. yr. Permian, 14 m. yr. Triassic). Major Kungurian herbivorized plants were unaffiliated taxa and pteridosperms;later during the Wuchiapingian cycadophytes were predominantly consumed. For the Anisian, pteridosperms and cycadophytes were preferentially consumed, and subordinately pteridophytes, lycophytes and conifers. Ladinian herbivores overwhelming targeted pteridosperms and subordinately cycadophytes and conifers. Throughout the interval the percentage of insect-damaged leaves in bulk floras, as a proportion of total leaves examined, varied from 3.6% for the Kungurian (N = 464 leaves), 1.95% for the Wuchiapingian (N = 1531), 11.65% for the pooled Anisian (N = 1324), to 10.72% for the pooled Ladinian (N = 923), documenting an overall herbivory rise. The percentage of generalized consumption, equivalent to external foliage feeding, consistently exceeded the level of specialized consumption from internal feeding. Generalized damage ranged from 73.6% (Kungurian) of all feeding damage, to 79% (Wuchiapingian), 65.5% (pooled Anisian) and 73.2% (pooled Ladinian). Generalized-to-specialized ratios show minimal change through the interval, although herbivore component community structure (herbivore species feeding on a single plant-host species) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian-Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant- host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant-insect interactions remain unknown

    Environmental Control on Biotic Development in Siberia (Verkhoyansk Region) and Neighbouring Areas During Permian-Triassic Large Igneous Province Activity

    No full text
    We propose an updated ammonoid zonation for the Permian-Triassic boundary succession (the lower Nekuchan Formation) in the Verkhoyansk region of Siberia: (1) Otoceras concavum zone (uppermost Changhsingian); (2) Otoceras boreale zone (lowermost Induan); (3) Tompophiceras morpheous zone (lower Induan); and (4) Wordieoceras decipiens zone (lower Induan). The Tompophiceras pascoei zone, previously defined between the Otoceras boreale and Tompophiceras morpheous zones, is removed in our scheme. Instead of this the Tompophiceras pascoei epibole zone is proposed for the lower part of the Tompophiceras morpheous zone. New and previously published nitrogen isotope records are interpreted as responses to climatic fluctuations in the middle to higher palaeolatitudes of Northeastern Asia and these suggest a relatively cool climatic regime for the Boreal Superrealm; however the trend towards warming across the Permian-Triassic boundary transition is also seen. The evolutionary development and geographical differentiation of otoceratid ammonoids and associated groups are considered. It is likely that the Boreal Superrealm was their main refugium, where otocerid, dzhulfitid and some other ammonoids survived the major biotic crisis at the end of the Permian. The similarity of ontogenetic development of suture lines of Otoceras woodwardi Griesbach and O. boreale Spath gives some grounds for suggesting a monophyletic origin of the genus Otoceras, having bipolar distribution

    Middle Permian cephalopods of the Volga-Ural Region

    No full text
    corecore