38 research outputs found

    Quasi-Two-Dimensional Heterostructures (KM1 – xTe)(LaTe3) (M = Mn and Zn) with Charge Density Waves

    Get PDF
    Layered heterostructure materials with two different functional building blocks can teach us about emergent physical properties and phenomena arising from interactions between the layers. We report intergrowth compounds KLaM1 – xTe4 (M = Mn and Zn; x ≈ 0.35) featuring two chemically distinct alternating layers [LaTe3] and [KM1 – xTe]. Their crystal structures are incommensurate, determined by single X-ray diffraction for the Mn compound and a transmission electron microscope study for the Zn compound. KLaMn1 – xTe4 crystallizes in the orthorhombic superspace group Pmnm(01/2γ)s00 with lattice parameters a = 4.4815(3) Å, b = 21.6649(16) Å, and c = 4.5220(3) Å. It exhibits charge density wave order at room temperature with a modulation wave vector q = 1/2b* + 0.3478c* originating from electronic instability of Te-square nets in [LaTe3] layers. The Mn analog exhibits a cluster spin glass behavior with spin freezing temperature Tf ≈ 5 K attributed to disordered Mn vacancies and competing magnetic interactions in the [Mn1 – xTe] layers. The Zn analog also has charge density wave order at room temperature with a similar q-vector having the c* component ∼0.346 confirmed by selected-area electron diffraction. Electron transfer from [KM1 – xTe] to [LaTe3] layers exists in KLaM1 – xTe4, leading to an enhanced electronic specific heat coefficient. The resistivities of KLaM1 – xTe4 (M = Mn and Zn) exhibit metallic behavior at high temperatures and an upturn at low temperatures, suggesting partial localization of carriers in the [LaTe3] layers with some degree of disorder associated with the M atom vacancies in the [M1 – xTe] layers

    Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe

    Get PDF
    The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials

    Microstructure Evolution of Sol-gel Derived Oxide Nanostructures with In-Situ TEM

    No full text

    Internet-based Administration of Instruments, Usage and Accounting in Shared Facilities

    No full text

    Imaging of magnetic colloids under the influence of magnetic field by cryogenic transmission electron microscopy

    No full text
    The application of superparamagnetic nanoparticles for in vivo magnetic resonance imaging (MRI) under external ac magnetic field has attracted considerable research efforts in recent years. However, it is unclear how superparamagnetic nanostructures arrange themselves in fluidic environment under external magnetic field. Here, we report direct visualization of the effect of applied magnetic field to the ferrofluids (about 6 nm superparamagnetic magnetite (Fe(3)O(4)) nanoparticle "colloidal" suspension) using the cryogenic transmission electron microscopy (cryo-TEM). While long dipole chains (up to millimeter range) of the magnetite along the magnetic lines are found in samples dried inside the magnetic field, only short dipole chains (within tens of nanometer scale) with random orientations are observed in the wet sample observed by cryo-TEM. In the wet sample, aggregations of medium-length dipole chains (up to hundreds of nanometer) can be observed at the areas where the nanoparticles are "solidified" when phase separation occurs. In situ formation of flux-closure rings is observed at the edge where vitreous ice sublimes due to high-energy electron radiation that leaves magnetite nanoparticles isolated in the vacuum. Such observations may help elucidate the nature of magnetic field-induced assembly in fluidic environment as in the physiological aqueous conditions in MRI and related applications. (C) 200

    In-Situ TEM Characterization of Nucleation and Growth of Nanopatterned Oxides

    No full text
    corecore