7 research outputs found

    Active mud volcanoes on the upper slope of the western Nile deep-sea fan - first results from the P362/2 cruise of R/V Poseidon

    No full text
    In February 2008, cruise P362/2 was undertaken aboard R/V Poseidon to the Giza and North Alex mud volcanoes (MVs) on the upper slope of the western Nile deep-sea fan. Emitted fluids were strongly depleted in chloride and rich in hydrocarbons, predominantly of thermogenic origin. In-situ sediment temperature measurements indicate extremely high and moderate levels of activity for the North Alex MV and Giza MV, respectively, and suggest rapid changes from dormant to active stages. Both the physical properties of core sediments (e.g., color and magnetic susceptibility), and their assemblages of micro- and nannofossils point to different sources for the two mud volcanoes. Biostratigraphic dating suggests source depths of 2,100–2,450 mbsf for the Giza MV and 1,150–1,550 mbsf for the North Alex MV. Very high temperatures of up to 70°C in shallow sediments at the North Alex MV can be explained only if the fluid source were warmer and deeper than the sediment source

    Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon

    No full text
    Ocean acidification affects marine ecosystems and carbon cycling, and is considered a direct effect of anthropogenic carbon dioxide uptake from the atmosphere1–3 . Accumulation of atmospheric CO2 in ocean surface waters is predicted to make the ocean twice as acidic by the end of this century4 . The ArcticOcean is particularly sensitive to ocean acidification becausemoreCO2 candissolveincoldwater5,6 .Herewepresent observations of the chemical and physical characteristics of EastSiberianArctic Shelfwatersfrom1999,2000–2005,2008 and 2011, and find extreme aragonite undersaturation that reflects acidity levels in excess of those projected in this region for 2100. Dissolved inorganic carbon isotopic data and Markov chain Monte Carlo simulations of water sources using salinity andδ18 Odata suggest that the persistent acidification is driven by the degradation of terrestrial organic matter and discharge of Arctic river water with elevated CO2 concentrations, rather than by uptake of atmospheric CO2 . We suggest that East Siberian Arctic Shelf waters may become more acidic if thawing permafrost leads to enhanced terrestrial organic carbon inputs and if freshwater additions continue to increase, which may affect their efficiency as a source of CO2

    Cellular function and molecular structure of ecto-nucleotidases

    No full text
    corecore