14 research outputs found

    CodingQuarry: Highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts

    Get PDF
    Background: The impact of gene annotation quality on functional and comparative genomics makes gene prediction an important process, particularly in non-model species, including many fungi. Sets of homologous protein sequences are rarely complete with respect to the fungal species of interest and are often small or unreliable, especially when closely related species have not been sequenced or annotated in detail. In these cases, protein homology-based evidence fails to correctly annotate many genes, or significantly improve ab initio predictions. Generalised hidden Markov models (GHMM) have proven to be invaluable tools in gene annotation and, recently, RNA-seq has emerged as a cost-effective means to significantly improve the quality of automated gene annotation. As these methods do not require sets of homologous proteins, improving gene prediction from these resources is of benefit to fungal researchers. While many pipelines now incorporate RNA-seq data in training GHMMs, there has been relatively little investigation into additionally combining RNA-seq data at the point of prediction, and room for improvement in this area motivates this study. Results: CodingQuarry is a highly accurate, self-training GHMM fungal gene predictor designed to work with assembled, aligned RNA-seq transcripts. RNA-seq data informs annotations both during gene-model training and in prediction. Our approach capitalises on the high quality of fungal transcript assemblies by incorporating predictions made directly from transcript sequences. Correct predictions are made despite transcript assembly problems, including those caused by overlap between the transcripts of adjacent gene loci. Stringent benchmarking against high-confidence annotation subsets showed CodingQuarry predicted 91.3% of Schizosaccharomyces pombe genes and 90.4% of Saccharomyces cerevisiae genes perfectly. These results are 4-5% better than those of AUGUSTUS, the next best performing RNA-seq driven gene predictor tested. Comparisons against whole genome Sc. pombe and S. cerevisiae annotations further substantiate a 4-5% improvement in the number of correctly predicted genes. Conclusions: We demonstrate the success of a novel method of incorporating RNA-seq data into GHMM fungal gene prediction. This shows that a high quality annotation can be achieved without relying on protein homology or a training set of genes. CodingQuarry is freely available (https://sourceforge.net/projects/codingquarry/), and suitable for incorporation into genome annotation pipelines

    Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Candida parapsilosis </it>is one of the most common causes of <it>Candida </it>infection worldwide. However, the genome sequence annotation was made without experimental validation and little is known about the transcriptional landscape. The transcriptional response of <it>C. parapsilosis </it>to hypoxic (low oxygen) conditions, such as those encountered in the host, is also relatively unexplored.</p> <p>Results</p> <p>We used next generation sequencing (RNA-seq) to determine the transcriptional profile of <it>C. parapsilosis </it>growing in several conditions including different media, temperatures and oxygen concentrations. We identified 395 novel protein-coding sequences that had not previously been annotated. We removed > 300 unsupported gene models, and corrected approximately 900. We mapped the 5' and 3' UTR for thousands of genes. We also identified 422 introns, including two introns in the 3' UTR of one gene. This is the first report of 3' UTR introns in the Saccharomycotina. Comparing the introns in coding sequences with other species shows that small numbers have been gained and lost throughout evolution. Our analysis also identified a number of novel transcriptional active regions (nTARs). We used both RNA-seq and microarray analysis to determine the transcriptional profile of cells grown in normoxic and hypoxic conditions in rich media, and we showed that there was a high correlation between the approaches. We also generated a knockout of the <it>UPC2 </it>transcriptional regulator, and we found that similar to <it>C. albicans</it>, Upc2 is required for conferring resistance to azole drugs, and for regulation of expression of the ergosterol pathway in hypoxia.</p> <p>Conclusion</p> <p>We provide the first detailed annotation of the <it>C. parapsilosis </it>genome, based on gene predictions and transcriptional analysis. We identified a number of novel ORFs and other transcribed regions, and detected transcripts from approximately 90% of the annotated protein coding genes. We found that the transcription factor Upc2 role has a conserved role as a major regulator of the hypoxic response in <it>C. parapsilosis </it>and <it>C. albicans</it>.</p

    ASSESSMENT OF STIFFNESS IN RHEUMATOLOGY - THE USE OF RATING-SCALES

    No full text
    corecore