21 research outputs found

    Correlation Induced Inhomogeneity in Circular Quantum Dots

    Full text link
    Properties of the "electron gas" - in which conduction electrons interact by means of Coulomb forces but ionic potentials are neglected - change dramatically depending on the balance between kinetic energy and Coulomb repulsion. The limits are well understood. For very weak interactions (high density), the system behaves as a Fermi liquid, with delocalized electrons. In contrast, in the strongly interacting limit (low density), the electrons localize and order into a Wigner crystal phase. The physics at intermediate densities, however, remains a subject of fundamental research. Here, we study the intermediate-density electron gas confined to a circular disc, where the degree of confinement can be tuned to control the density. Using accurate quantum Monte Carlo techniques, we show that the electron-electron correlation induced by an increase of the interaction first smoothly causes rings, and then angular modulation, without any signature of a sharp transition in this density range. This suggests that inhomogeneities in a confined system, which exist even without interactions, are significantly enhanced by correlations.Comment: final version, modified introduction and clarifications, 4 page

    NK cells and cancer: you can teach innate cells new tricks

    Full text link
    Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer
    corecore