31 research outputs found

    Anti-tumour activity and toxicity of the new prodrug9-aminocamptothecin glucuronide (9ACG) in mice

    Get PDF
    Cancer chemotherapy is limited by the modest therapeutic index of most antineoplastic drugs. Some glucuronide prodrugs may display selective anti-tumour activity against tumours that accumulate β-glucuronidase. We examined the toxicity and anti-tumour activity of 9-aminocamptothecin glucuronide, a new glucuronide prodrug of 9-aminocamptothecin, to evaluate its potential clinical utility. 9-aminocamptothecin glucuronide was 25–60 times less toxic than 9-aminocamptothecin to five human cancer cell lines. β-glucuronidase activated 9-aminocamptothecin glucuronide to produce similar cell killing as 9-aminocamptothecin or topotecan. The in vivo toxicity of 9-aminocamptothecin glucuronide in BALB/c mice was dose-, route-, sex- and age-dependent. 9-aminocamptothecin glucuronide was significantly less toxic to female than to male mice but the difference decreased with age. 9-aminocamptothecin glucuronide and 9-aminocamptothecin produced similar inhibition (∼80%) of LS174T human colorectal carcinoma tumours. 9-aminocamptothecin glucuronide cured a high percentage of CL1-5 human lung cancer xenografts with efficacy that was similar to or greater than 9-aminocamptothecin, irinotecan and topotecan. The potent anti-tumour activity of 9-aminocamptothecin glucuronide suggests that this prodrug should be further evaluated for cancer treatment

    A phase I study with MAG-camptothecin intravenously administered weekly for 3 weeks in a 4-week cycle in adult patients with solid tumours

    Get PDF
    In MAG-camptothecin (MAG-CPT), the topoisomerase inhibitor camptothecin is linked to a water-soluble polymer. Preclinical experiments showed enhanced antitumour efficacy and limited toxicity compared to camptothecin alone. Prior phase I trials guided the regimen used in this study. The objectives were to determine the maximum tolerated dose, dose-limiting toxicities, safety profile, and pharmacokinetics of weekly MAG-CPT. Patients with solid tumours received MAG-CPT intravenously administered weekly for 3 weeks in 4-week cycles. At the starting dose level ( 80 mg m(-2) week(-1)), no dose-limiting toxicities occurred during the first cycle (n = 3). Subsequently, three patients were enrolled at the second dose level ( 120 mg m(-2) week(-1)). Two of three patients at the 80 mg m(-2) week(-1) cohort developed haemorrhagic cystitis ( grade 1/3 dysuria and grade 2/3 haematuria) during the second and third cycles. Next, the 80 mg m(-2) week(-1) cohort was enlarged to a total of six patients. One other patient at this dose level experienced grade 1 haematuria. At 120 mg m(-2) week(-1), grade 1 bladder toxicity occurred in two of three patients. Dose escalation was stopped at 120 mg m(-2) week(-1). Cumulative bladder toxicity was dose-limiting toxicity at 80 mg m(-2) week(-1). Pharmacokinetics revealed highly variable urinary camptothecin excretion, associated with bladder toxicity. Due to cumulative bladder toxicity, weekly MAG-CPT is not a suitable regimen for treatment of patients with solid tumours

    SCOTROC 2B: feasibility of carboplatin followed by docetaxel or docetaxel–irinotecan as first-line therapy for ovarian cancer

    Get PDF
    The feasibility of combination irinotecan, carboplatin and docetaxel chemotherapy as first-line treatment for advanced epithelial ovarian carcinoma was assessed. One hundred patients were randomised to receive four 3-weekly cycles of carboplatin (area under the curve (AUC) 7) followed by four 3-weekly cycles of docetaxel 100 mg m−2 (arm A, n=51) or docetaxel 60 mg m−2 with irinotecan 200 mg m−2 (arm B, n=49). Neither arm met the formal feasibility criterion of an eight-cycle treatment completion rate that was statistically greater than 60% (arm A 71% (90% confidence interval (CI) 58–81%; P=0.079; arm B 67% (90% CI 55–78%; P=0.184)). Median-dose intensities were >85% of planned dose for all agents. In arms A and B, 15.6 and 12.2% of patients, respectively, withdrew owing to treatment-related toxicity. Grade 3–4 sensory neurotoxicity was more common in arm A (1.9 vs 0%) and grade 3–4 diarrhoea was more common in arm B (0.6 vs 3.5%). Of patients with radiologically evaluable disease at baseline, 50 and 48% responded to therapy in arms A and B, respectively; at median 17.1 months' follow-up, median progression-free survival was 17.1 and 15.9 months, respectively. Although both arms just failed to meet the formal statistical feasibility criteria, the observed completion rates of around 70% were reasonable. The addition of irinotecan to first-line carboplatin and docetaxel chemotherapy was generally well tolerated although associated with increased gastrointestinal toxicity. Further exploratory studies of topoisomerase-I inhibitors in this setting may be warranted

    A pharmacokinetic and pharmacodynamic study on metronomic irinotecan in metastatic colorectal cancer patients

    Get PDF
    The pharmacokinetics (PK) and pharmacodynamics (PD) of metronomic irinotecan have not been studied in cancer patients. The aim of the study is to investigate the PK/PD profile of irinotecan/SN-38 administered by metronomic schedule. Twenty chemotherapy-refractory or chemotherapy-resistant patients with metastatic colorectal carcinoma were enrolled. Irinotecan was infused continuously as follows: irinotecan 1.4 mg m−2 day−1 (n=7), 2.8 mg m−2 day−1 (n=5) and 4.2 mg m−2 day−1 (n=8). Drug levels were examined by HPLC, whereas ELISAs and real-time RT-PCR were used, respectively, for the measurement of plasma levels and gene expression in peripheral blood mononuclear cells of vascular endothelial growth factor/thrombospondin-1. Pharmacokinetic analysis demonstrated that the steady-state levels (Css) of SN-38 were between 1 and 3.3 ng ml−1. From a PD point of view, higher thrombospondin-1 (TSP-1) plasma levels (153.4±30.1 and 130.4±9.2% at day 49 vs pretreatment values at 1.4 and 2.8 mg m−2 day−1 dose levels, respectively) and increased gene expression in PBMC were found during the metronomic irinotecan infusion, especially at the lower doses. Four patients (20%) obtained a stable disease (median 3.9 months) despite progressing during previous standard irinotecan schedule. Toxicities >grade 1 were not observed. Metronomic irinotecan administration is very well tolerated and induces an increase of gene expression and plasma concentration of TSP-1 at low plasma SN-38 concentrations

    Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients

    Get PDF
    This study aims at establishing relationships between genetic and non-genetic factors of variation of the pharmacokinetics of irinotecan and its metabolites; and also at establishing relationships between the pharmacokinetic or metabolic parameters and the efficacy and toxicity of irinotecan. We included 49 patients treated for metastatic colorectal cancer with a combination of 5-fluorouracil and irinotecan; a polymorphism in the UGT1A1 gene (TA repeat in the TATA box) and one in the CES2 gene promoter (830C>G) were studied as potential markers for SN-38 glucuronidation and irinotecan activation, respectively; and the potential activity of CYP3A4 was estimated from cortisol biotransformation into 6β-hydroxycortisol. No pharmacokinetic parameter was directly predictive of clinical outcome or toxicity. The AUCs of three important metabolites of irinotecan, SN-38, SN-38 glucuronide and APC, were tentatively correlated with patients' pretreatment biological parameters related to drug metabolism (plasma creatinine, bilirubin and liver enzymes, and blood leukocytes). SN-38 AUC was significantly correlated with blood leukocytes number and SN-38G AUC was significantly correlated with plasma creatinine, whereas APC AUC was significantly correlated with plasma liver enzymes. The relative extent of irinotecan activation was inversely correlated with SN-38 glucuronidation. The TATA box polymorphism of UGT1A1 was significantly associated with plasma bilirubin levels and behaved as a significant predictor for neutropoenia. The level of cortisol 6β-hydroxylation predicted for the occurrence of diarrhoea. All these observations may improve the routine use of irinotecan in colorectal cancer patients. UGT1A1 genotyping plus cortisol 6β-hydroxylation determination could help to determine the optimal dose of irinotecan

    A phase I clinical trial of continual alternating etoposide and topotecan in refractory solid tumours

    Get PDF
    The goal of this phase I study was to develop a novel schedule using oral etoposide and infusional topotecan as a continually alternating schedule with potentially optimal reciprocal induction of the nontarget topoisomerase. The initial etoposide dose was 15 mg m−2 b.i.d. days (D)1–5 weeks 1,3,5,7,9 and 11, escalated 5 mg per dose per dose level (DL). Topotecan in weeks 2,4,6,8,10 and 12 was administered by 96 h infusion at an initial dose of 0.2 mg m−2 day−1 with a dose escalation of 0.1, then at 0.05 mg m−2 day−1. Eligibility criteria required no organ dysfunction. Two dose reductions or delays were allowed. A total of 36 patients with a median age of 57 (22–78) years, received a median 8 (2–19) weeks of chemotherapy. At DL 6, dose-limiting toxicities consisted of grade 3 nausea, vomiting and intolerable fatigue. Three patients developed a line-related thrombosis or infection and one subsequently developed AML. There was no febrile neutropenia. There were six radiologically confirmed responses (18%) and 56% of patients demonstrated a response or stable disease, typically with only modest toxicity. Oral etoposide 35 mg m−2 b.i.d. D1–5 and 1.8 mg m−2 96 h (total dose) infusional topotecan D8–11 can be administered on an alternating continual weekly schedule for at least 12 weeks, with promising clinical activity

    Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp

    Full text link
    corecore