6 research outputs found
Functional Amyloids Composed of Phenol Soluble Modulins Stabilize Staphylococcus aureus Biofilms
Staphylococcus aureus is an opportunistic pathogen that colonizes the skin and mucosal surfaces of mammals. Persistent staphylococcal infections often involve surface-associated communities called biofilms. Here we report the discovery of a novel extracellular fibril structure that promotes S. aureus biofilm integrity. Biochemical and genetic analysis has revealed that these fibers have amyloid-like properties and consist of small peptides called phenol soluble modulins (PSMs). Mutants unable to produce PSMs were susceptible to biofilm disassembly by matrix degrading enzymes and mechanical stress. Previous work has associated PSMs with biofilm disassembly, and we present data showing that soluble PSM peptides disperse biofilms while polymerized peptides do not. This work suggests the PSMs' aggregation into amyloid fibers modulates their biological activity and role in biofilms
Immunobiology of a Synthetic Luteinizing Hormone Receptor Peptide 21–41
Immunization of adult male rabbits with a synthetic luteinizing hormone-receptor peptide (LH-RP; representing amino-acids 21-41 of the extracellular domain of the rat LH receptor) resulted in production of high-titer antibodies capable of interacting with particulate and cell-based LH receptors. The antibody produced was able to inhibit binding of I-125-labeled human chorionic gonadotropin (hCG) to a particulate sheep luteal LH receptor preparation by 40%-50%. Maximal inhibitory activity was correlated with high antibody titer. Immunocytometry revealed that the antibody could directly bind to cells having LH receptors, such as rat granulosa and Leydig cells. The antibodies recognized a 77-kilodalton membrane protein in Western blots of mouse testicular extracts. Interaction of endogenous Leydig cell LH receptor with the LH-RP antibody resulted in both hormone agonist and antagonistic activities. The hormone-mimicking activity (increase in serum testosterone over control) was confined only to the early phase of immunization when the antibody titer was low. Blockade of LH receptor during the later part of immunization resulted in a significant reduction in serum testosterone over controls and inhibition of spermatogenesis. DNA flow cytometry showed that a specific and significant inhibition of meiosis (transformation of primary spermatocytes to round and elongated spermatids P < .01) and spermiogenesis (transformation of round spermatids to elongated permatids P < .0001) occurred following blockade of LH function
