15 research outputs found
Formulation for Oral Delivery of Lactoferrin Based on Bovine Serum Albumin and Tannic Acid Multilayer Microcapsules
We thank A*STAR, Singapore and Ministry of Business, Innovation and Employment, New Zealand, SG-NZ Foods for Health Grant for financial support of this work (Project 1414024010). The work was also supported by Ministry of Education and Science of the Russian Federation as grant No. 14.Z50.31.0004 to support scientific research projects implemented under the supervision of leading scientists at Russian institutions and Russian institutions of higher education. E.K. and M.V.N. acknowledge financial support by the A*STAR Graduate Academy, Singapore. O.A.S. is thankful to Scholarship of President of Russian Federation for training abroad in 2016/17 academic year
Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line
Abstract Purpose Natural products represent a rich reservoir of potential small molecule inhibitors exhibiting antiproliferative and tumoricidal properties. An example is the isoquinoline alkaloid berberine, which is found in plants such as goldenseal (Hydrastis canadensis). Studies have shown that berberine is able to trigger apoptosis in different malignant cell lines, and can also lead to cell cycle arrest at sub-apoptotic doses. A particularly interesting feature of berberine is the fact that it is a fluorescent molecule, and its uptake and distribution in cells can be studied by flow cytometry and epifluorescence microscopy. To test the relationships between berberine uptake, distribution and cellular effect in melanoma cells, K1735-M2 mouse and WM793 human melanoma cells were treated with different concentrations of berberine, and alterations in cell cycle progression, DNA synthesis, cell proliferation, and cell death measured. Methods Cell proliferation was measured by sulforhodamine B assays, cell death by flow cytometry, berberine uptake and distribution by laser scanning confocal microscopy and flow cytometry, cell cycle progression by flow cytometry, and DNA synthesis, M-phase, and mitochondrial effects by immunolabeling and epifluorescence microscopy methods. Results In these melanoma cell lines, berberine at low doses (12.5–50 µM) is concentrated in mitochondria and promotes G1 arrest. In contrast, higher doses (over 50 µM) result in cytoplasmic and nuclear berberine accumulation, and G2 arrest. DNA synthesis is not markedly affected by low doses of berberine, but 100 µM is strongly inhibitory. Even at 100 µM, berberine inhibits cell growth with relatively little induction of apoptosis. Conclusion Berberine displays multiphasic effects in these malignant cell lines, which are correlated with the concentration and intracellular distribution of this alkaloid. These results help explain some of the conflicting information in the literature regarding the effects of berberine, and suggest that its use in clinical development may be more as a cytostatic agent than a cytotoxic compound
Reconstruction of biochemical networks in microorganisms.
Systems analysis of metabolic and growth functions in microbial organisms is rapidly developing and maturing. Such studies are enabled by reconstruction, at the genomic scale, of the biochemical reaction networks that underlie cellular processes. The network reconstruction process is organism specific and is based on an annotated genome sequence, high-throughput network-wide data sets and bibliomic data on the detailed properties of individual network components. Here we describe the process that is currently used to achieve comprehensive network reconstructions and discuss how these reconstructions are curated and validated. This review should aid the growing number of researchers who are carrying out reconstructions for particular target organisms
Dual RNA-seq of pathogen and host
A comprehensive understanding of host–pathogen interactions requires a knowledge of the associated gene expression changes in both the pathogen and the host. Traditional, probe-dependent approaches using microarrays or reverse transcription PCR typically require the pathogen and host cells to be physically separated before gene expression analysis. However, the development of the probe-independent RNA sequencing (RNA-seq) approach has begun to revolutionize transcriptomics. Here, we assess the feasibility of taking transcriptomics one step further by performing 'dual RNA-seq', in which gene expression changes in both the pathogen and the host are analysed simultaneously